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Abstract 

The influence of the recombination process of OH- and H+ ions on the migration current exaltation 
effect, which has been observed during the parallel reduction of cations and the neutral substance [1,2], is 
considered here. It is shown that qualitatively different types of behavior of the system studied are 
possible depending on the ratio of concentrations of discharging cations and H + ions in the solution. It 
is found that under certain conditions in acid solutions an unusual limiting diffusion-migration current of 
cation discharge may be observed due to the falling off to zero of the cation concentration within the 
diffusion layer. For neutral solutions, approximate analytical solutions and numerical solutions of the 
corresponding system of electrodiffusion equations are obtained. It is shown that for real values of the 
water dissociation-recombination equilibrium constant, due account of the recombination process leads 
to a relatively small correction in the theory of the migration current exaltation effect developed in refs. 
3-6. 

(1) INTRODUCTION 

The increase of the limiting current of the cation reduction reaction during the 
simultaneous reduction of the neutral substance was first discovered experimentally 
in 1936 by Kemula and Michalski [1] and was called the effect of migration current 
exaltation. Quantitative study of the migration current exaltation effect was con- 
ducted by Heyrovsky and Bures [2]. The irreversible reduction of Na +  ions from 
dilute NaCl solutions was studied. First, the polarographic wave corresponding to 
the discharge of Na+  ions was recorded, then the solution was saturated with 
oxygen from the air, and a new polarographic wave was recorded. The limiting 
current in the second case was higher than the sum of the oxygen reduction current 
and the limiting current of Na+  reduction in the absence of oxygen. 



In refs. 3-6 a theory of the exaltation effect was put forward which takes account 
of the fact that as a consequence of the reaction of the neutral substance reduction 
(of O,, for instance) which proceeds in parallel with the reaction 

A='++ zl e--, A'' (1) 

of Alli cation discharge, there may appear negatively charged products (OH-, for 
instance) in the diffusion layer: 

0 , + 2  H 2 0 + 4 e - - 4 O H -  (2) 

These substances may be absent in the bulk solution, but nevertheless the system of 
electrodiffusion equations describing parallel processes must include the equation 
for the aforementioned anions. The dependence of the density of the limiting 
current of Na+ cation reduction, i:, upon the density of the neutral substance 
reduction current i, equals [4] 

where D l ,  zl and D,, z ,  are the diffusion coefficients and the absolute values of the 
charges of the cations and of the products of reduction of the neutral substance 
respectively, z2 is the absolute value of the anion's charge, c0 is the concentration of 
cations in the bulk electrolyte, L stands for the thickness of the Nernst diffusion 
layer, and F is the Faraday constant. 

It follows from eqn. (3) that the limiting current of the cation discharge rises 
linearly with the increase of the neutral substance reduction current. 

Equation (3) was first derived in refs. 3 and 4 within the frame of the model of 
stationary processes of cation reduction and parallel reduction of neutral substances 
and using the approximation of the Nernst diffusion layer model. These approxima- 
tions are well justified for the case of the rotating disk electrode. In ref. 5 the effect 
of migration current exaltation was analyzed numerically for the case of a growing 
mercury drop electrode. This analysis took into account explicitly convective trans- 
port of ions as well as transport by diffusion and migration and also the non-sta- 
tionary nature of the process due to the growth of the drop. The results of ref. 5 
were found to be in good agreement with the theory developed in refs. 3 and 4, thus 
demonstrating the possibility of using the Nernst diffusion layer model for describ- 
ing the migration current exaltation effect in classical polarography. 

In constructing the theory of the migration current exaltation effect, it was 
assumed that there are no neutral substance reduction products (in the case at issue, 
OH - )  in the bulk solution. Besides, the existence of H + cations was also ignored 
which may emerge as a result of the water dissociation-recombination homoge- 
neous reaction 

OH-+  H + =  H 2 0  (4) 

The present paper presents a theoretical analysis of the parallel processes of 
reduction of cations and of the oxygen dissolved in water for arbitrary values of pH 
of the solution. OH-  anions, generated during the reduction of O2 ,  enter into the 



diffusion layer where they undergo a recombination reaction with H +  cations. If the 
concentration of H+ cations in the solution is not high, then we may expect that the 
resultant process will be fairly similar to the process which takes place in the 
migration current exaltation effect. In the reverse limiting case, when the concentra- 
tion of H' ions in the solution is high, one may expect that practically all OH - ions 
will react with H' in the immediate vicinity of the electrode's surface, so that the 
resultant reaction of oxygen reduction becomes 

Here we have the parallel reduction of cations of the solution and of H' cations, 
which is described by the theory of the effect of migration current correlation 
exaltation [7]. 

For intermediate concentrations of H-  cations in the solution, a transition is 
expected from the situation described by the migration current exaltation effect to 
the situation corresponding to the effect of migration current correlation exaltation. 

(2) GENERAL FORMULATION OF THE PROBLEM 

For simplicity, we will suppose that all ions in the system are singly charged. The 
results obtained below may easily be generalized to any system of ions having equal 
absolute charges. 

The system of electrodiffusion equations describing parallel reduction of A +  
cations according to eqn. (1) and reduction of oxygen in eqn. (2) with the subse- 
quent recombination (eqn. 4) within the Nernst diffusion layer, is given by 

Here, c,, c,, c3 and c4 are the concentrations of cations, anions, OH -  ions and 
H C  ions, respectively, divided by cO, being the concentration of A +  cations in the 
bulk solution; \k = F$/RT is the dimensionless electric potential; x is a dimension- 
less coordinate (0 < x < 1); i1 stands for the cation discharge current density; k ,  is 
the rate constant of H +  and OH - recombination; k ,  is the water dissociation 
reaction rate constant; all other notations are standard. Equation (10) expresses the 
condition of local electroneutrality. 



The boundary conditions at x = 1 (the boundary between the diffusion layer and 
bulk solution) are as follows: 

c ( )  = 1 ,  c2(1) = 1 + k - m ,  c3(l)  = m ,  c4( l )  = k ,  + ( I )  = 0 (11) 

Combining eqns. (8) and (9), one can obtain 

where i, is the oxygen reduction current density, and j, is the corresponding 
dimensionless flux. 

The current of the neutral substance reduction (in this case, of 0,) does not 
depend on the rate of reduction of other substances and is specified only by the 
concentration of 0, in the stirred part of the solution. Therefore, the value of the 
current density i 2  in the problem in question may be considered as a given external 
parameter. 

The values of the constants k 1 and k, under normal conditions are [8] k 1= 2.5 
x l o p 5  s- '  and k, = 1.4 X 10" l2  mol-' s- ' .  Therefore, provided that reaction (4) 
proceeds mainly in the direction of H' and OH - ion recombination, this reaction 
may be considered fast compared with the diffusion-migration transport of ions. 
Thus, we can assume that equilibrium is maintained within the diffusion layer: 

where c2 stands for the equilibrium constant of reaction (4) reduced to the 
dimensionless form by dividing it by the square of the concentration of discharging 
cations in the bulk solution. For a typical value for c0 of 0.1 M and the values of k ,  
and k, given above, c2 -- 1.3 x 10-l4 << 1. 

Therefore, the initial system of electrodiffusion equations is reduced to the 
system of three equations (eqns. 6, 7 and 12), two algebraic relations (eqns. 10 and 
13), and the boundary conditions (eqn. 11). This system, generally, does not have an 
analytical solution, and so, to solve it, additional simplifications are needed. Thus, 
in section 3 below it is supposed that e = 0. In sections 4-6 c is assumed to be small, 
c << 1, but non-zero. The results of section 4 are valid for the case of small currents, 
j, << 1, and those of section 6 pertain to the case of strong currents, j 1> 2. In 
section 5, the general solution of the initial system (eqns. 6, 7 ,  10-13) is presented 
for the case of neutral solution, and in section 7 the results of numerical integration 
of the system of equations are described. 

(3) T H E  MIGRATION CURRENT EXALTATION EFFECT IN ACID SOLUTIONS 

As stated in section 2, the value of the equalibrium constant is c 2  << 1 and thus 
we can put c  ≅0 with hlgh accuracy. This enables us to use the approximate 
equality c,c4 I. 0 instead of eqn. (13), which means that at any point within the 
diffusion layer, in the zero-order approximation, there exist either O H- ions or H+ 

ions but not both kinds of ion together. Since we are studying an acid medium, we 



have to set the value of m ,  corresponding to the concentration of O H- ions in the 
bulk solution, equal to zero in the boundary conditions (eqn. 11). 

Thus, the diffusion layer is divided by the point x  = θ  of H +  and OH-  ion 
recombination into two regions: 0 G x  G 8 and 8 Q x  Q 1. In the region to the right 
of x  = θ  we can assume c, > 0 and c, = 0, and in the region to the left of x  = 8 we 
may put c, > 0 and c, = 0. These approximations make it possible to go from eqns. 
(12) and (13) to the following two equations: 

dc, d\k i 2 L  
- + c  -=7=j2v t 9 < x < I  
dx 4 d ~  FD',c 

where v  = D3/D4.  Note that the dimensionless fluxes j1 and j2, introduced in eqns. 
(6)  and (14), are positive. 

This way the initial electrodiffusion system of eqns. (6)- (9) is split into two 
simpler systems of first order equations. In the region 0 Q x  Q θ ,  the system is given 
by eqns. (6) ,  (7),  (14) and (10) and coincides with the system of equations used for 
the description of the migration current exaltation effect. In the region 8 Q x  Q 1, 
the system is given by eqns. (6) ,  (7), (15) and (10) and coincides with the system of 
equations used for the description of the migration current correlation exaltation 
effect. 

At the point x = 8 all concentrations c, must be continuous. The point 8 itself 
must be found simultaneously with the solution of the system of electrodiffusion 
equations. In accordance with the aforesaid, its position should depend on the 
values of the currents i1 and i ,  as well as on the parameters v  and k.  i.e. on the 
value of the concentration of H' ions in the solution. It is reasonable to expect that 
with the increase of the latter the point x  = 8 will come nearer to the electrode, and 
for sufficiently high concentrations of H', when reaction (1 )  is replaced by reaction 
(2), θ  falls off to zero. 

We begin our investigation with the case when the point x  = θ  lies within the 
interval (0, 1). 

Let us find the concentration distributions c , ( x ) ,  c , ( x )  c , ( x ) ,  and c , ( x )  in each 
of the regions O < x < 8  and 8 ~ x 9  1 .  

The concentration c 2 ( x )  in the region θ  < x  < 1 may be obtained easily by 
addition and subsequent integration of eqns. (6) ,  (7) and (10) with due account of 
the boundary conditions (eqn. 11): 

Owing to (eqn. 16), from eqn. (7 )  we find 

dlCi - = -  jl + vj2 
dx 2(1 + k )  + ( j ,  + v j 2 ) ( x  - 1 )  



Substituting eqn. (17)  into eqn. ( 6 )  and then integrating the linear equation thus 
obtained, with eqn. (11)  in view, we find the distribution of cations c , ( x )  in the 
region θ  g  x  g  1:  

The concentration c 4 ( x )  in this region follows from the electroneutrality condition 
(eqn. 10) and the condition c 3 ( x  > θ )  = 0. 

For x  = θ ,  the concentrations c1 and c,, given by eqns. (16)  and (18),  take equal 
values, according to the above-mentioned condition ~ ~ ( 8 )  = c 4 ( 8 )  = 0 ,  
c l ( 8 )  = G ,  c 2 ( 8 )  = G  ( 1 9 )  

When finding the concentration distributions c , ( x )  in the region 0  =s x  g  θ ,  we 
will use the continuity relations 

C , ( O  - 0 )  = ~ , ( 8  + 0 )  = G ,  ~ ~ ( 8  - 0 )  = C , ( B  + 0 )  = G ( 2 0 )  
as the boundary conditions at x  = θ. The two eqns. (19)  make up a system of 
equations from which we can determine the unknown θ  and G :  

G =  { ( I  + k ) ( l  - j , k / v j 2 )  ( 2 1 )  

8  = 1  - 2(1 + k ) [ l  - {( l  - j l k / v j 2 ) / ( l  + k )  ] / (  j ,  + v j 2 )  ( 2 2 )  
The solution of the system of eqns. (6) ,  (7 ) ,  (10)  and (14)  in the region 0  g  x  < 8  
with the boundary conditions (eqn. 10) may be found in a similar way to that used 
in ref. 3, and is given by the following expressions: 

c1 = ( j 1 - j 2 ) ( x  - 8 ) / 2  + ( 2 3 )  
d\k -- - jl + j2 
dx ( j 1 - j 2 ) ( x  - θ )  + 2G 

c 2 =  ~ [ ( j ,  - j 2 ) ( x  - 8 ) / 2 G +  11 ( J I  + 1 2 ) / (  JI - J 2 )  ( 2 5 )  
The concentration distributions for all components and for the potential in the 

whole region 0  < x  < 1  is given by eqns. (16)-(18), (20)- (25)  and (10) ,  provided that 
the conditions 

v j 2 > k j ,  0 < 8 < l  ( 2 6 )  
C , ( X ) > O  f o r O g x g 1  ( 2 7 )  
are fulfilled. 

Note that the fulfillment of condition (26) is necessary for the existence of G  (see 
eqn. 21) as well as of 8 (see eqn. 22). One can readily make sure that the condition 
θ   < 1  does not impose any additional restrictions on the parameters v ,  k ,  j,  and j2. 
Given by eqn. (22), the value of 8  generally decreases with the increase of j1  for 
fixed j2. The condition θ  = 0  leads to the following relation between j1  and j,: 



Proper account of inequality (26) leads to the fact that j, in eqn. (28) may vary in 
the range 0 < j, < 2. Meanwhile, the value of v j2  in eqn. (28) may vary from vj ,  = 

2 J i T E ( & F Z  - 1) for j, = 0 to vj, = 2k for j, = 2. On the plane ( j2, j,), region 
I (Fig. 1) corresponds to the condition 0 < θ < 1, and lies to the right of the curve 
j,( j,) specified by eqn. (28) and below the straight line j, = vj2/k (see eqn. 26) 
which conforms with the condition G = 0. 

Let us now consider more closely the situation when the oxygen reduction 
reaction proceeds according to eqn. (5), and the diffusion layer does not contain 
OH-  anions. There, in the whole region 0 < x < 1, the distributions c,, c,, c, and \k 
are described by eqns. (6), (7), (15) and (10) and the boundary conditions (eqn. l l ) ,  
the solutions of which are given by eqns. (16), (18) and (10). The values of surface 
concentrations c,(O) and c,(O) both depend on the parameters v and k, and the 
values of the currents j, and j,. In accord with the generally accepted definition of 
limiting current, we shall assume that the condition c,(O) = 0 corresponds to the 
cation reduction limiting current j f .  This current depends on the current j2 of the 
parallel oxygen reduction reaction. The dependence of j,' on j2 follows from eqn. 
(18) and the condition c,(O) = 0, and is given [4] by the expression 

and is presented in Fig. 1. The curve j,'( j,) emerges at j, = 0 from the point 

j; = 2(1 + k ) ( l  - J1 - l / ( l  + k )  ) 
corresponding to Eucken's formula [9], and when vj2/k = 2 it passes through the 
point Q, where j,' = 2, where it joins the curve (eqn. 28), and becomes the straight 
line j, = vj2/k. For j, <j: and c,(O) > 0 the system's behavior corresponds to 
region II on the plane (j , ,  j,) (Fig. 1). When the flux j, is constant and the flux j, 
increases the concentration c,(O) diminishes (see Fig. 2, curves 1 and 2). When the 
condition c,(O) = 0 is satisfied, which, as one can readily verify, coincides with the 
condition θ = 0 (see Fig. 2, curve 3), we come to the right-hand boundary of region 
II specified by eqn. (28). We lay emphasis on the fact that turning c,(O) to zero does 
not imply the appearance of the limiting current of the oxygen reduction reaction, 
but corresponds to the switch of the electrode reaction mechanism from eqn. (5) to 
eqns. (2) and (4). On further rise of j2 in region I the point x = θ, given by eqn. 
(22), is shifted to the right (curves 4 and 5 in Fig. 2), and in the region 0 < x < 8 
OH- ions generated on the electrode are spread. 

Turning back to the investigation of region I in Fig. 1, let us analyze the trend of 
the change of the cations concentration c,(x) when the current j, of the reduction 
reaction changes and the flux j, is fixed. 

For j, = 0 the concentration c,(x) decreases linearly with the increase of x in the 
region 0 < x 6 θ and keeps falling in the region 8 < x < 1. Upon increase of the flux 
j,, the concentration c,(x) in the region 0 < x < θ still changes linearly, and c,(O) 
and cl(8) = G diminish with rising j,. For sufficiently high values of j, > vj,/(l + 



Fig. 1. Lay-out of regions of different behavior of the system on the plane J , ,  j, for k < v. (1) curve 
j;(j2) described by eqn. (29), (2) curve 8 = 0 described by eqn. (28), (3) curve G = 0 described by eqn. 
(21). (4) curve jleO( j2) described by eqn. (31). 

Fig. 2. Distribution of the concentrations c,(x) (curves 1-5) and c , (x)  (curves 4'. 5 ' ) .  Curves 1 and 2 
correspond to region II, curves 4, 4', 5, 5' correspond to region I, curve 3 corresponds to the condition 
e = o .  

2k), there appears a minimum for x = 0 * on the curve of c , (x)  dependence in the 
region 0 g x < 1 (see Fig. 3a), which is determined by the expression 

Upon further increase of j1 a situation may arise (for j1 > j2)  where c,(O) becomes 
less than G (see Fig. 3b). The condition c,(O) = 0, where c, is given by eqn. (23), 
conforms with the conventional definition of the limiting current jy of cation 
discharge and leads to the following relation: 

where the value of J = j2/j$ is bounded by the inequality J < 1 which, together 
with condition (25), is realized in the case k < v. The dependence j y (  j,), described 
by eqn. (30) for k < v,  is shown in Fig. 1. We stress that the curve j1

eo( j,) for k < v 
lies beneath the straight line j2 = kj,/v, that corresponds to the condition G = 0, 
and, therefore, that the curve j y ( j 2 )  serves as the upper boundary of region I in 
which there exists a solution with 0 < B < 1. It begins at the point Q in Fig. 1 and 
for j2 >> 1 approaches the straight line j$ = j2 + 2V'(1 + k ) ( l  - kv) asymptotically. 
The concentration distributions for all components, corresponding to the condition 
c,(O) = 0 and eqn. (30), are presented in Fig. 3c. 

For k > v ,  the concentration c,(O) does not vanish for any values of j1 and j,. 
The increase of j, when j, is fixed leads to the advanced decrease of c,(B) = G in 



Fig. 3. Different types of distribution of the concentrations of ionic components, corresponding to region 
I in Figs. l a  and lb .  (a) the current j1  is less than the limiting current and c,(O) > G: (b)  the current j 1  is 
less than the limiting current and c,(O) < G: (c) the current j ,  is equal to the limiting current provided 
that c,(O) = 0: (d) the current j1 is equal to the limiting current provided that c , ( 6 )  = 0. 

comparison with c,(O). At the same time the value x = a * .  where c , ( x )  has a 
minimum, approaches to x = 9 and for sufficiently high values of j 1= i," the point - 
θ * merges with 9, and c(9 * ) = G becomes zero. This occurs for j1 = and 6 = 9: 

In this case region I is bounded by the conditions G = 0 and θ = 0. 



Fig. 4. The limiting current j; of cation discharge as a function of the current J,: (1) k = 0;  (2) 0 < k < v ;  
(3) k = v ;  (4) k > v. 

The following formulas for the ion concentration distributions and electric field 
correspond to the situation when c I ( 8 )  = G = 0 :  

c , = ( x - 8 ) / ( l - 8 ) ,  c 2 = ( 1 + k ) c l ,  c 3 = 0 ,  c 4 = k c , ,  

dq/dx = - l / ( x  - 8)  for x  > θ~ 
~ ~ = ~ ~ = j ~ ( l - ~ / k ) ( 6 - ~ ) / 2 ,  c 2 = c 4 = 0 ,  

d\k/dx = - ( k  + v ) / [ ( k  - v ) ( 8 -  x ) ]  for x  < 6 

which follow from eqns. (16)- (18) and (23)- (25).  
Note that there are no salt anions in the region 0 < x  < 6 for j ,  = j:', i.e, the 

solution is a binary electrolyte that consists of discharging cations and OH- anions 
generated on the electrode. Concentration distributions (33) and (34)  are shown in 
Fig. 3d. 

Dependences of the cation discharge limiting current on the oxygen reduction 
reaction current for different values of k  and v are given in Fig. 4. For j, such that 
j; < 2, the dependences j ; ( j 2 )  follow from the formulas of the theory of the 
migration current correlation exaltation. Further behavior of j; is determined by 
the ratio of k  and v. For k  2 v  (curves 3 and 4 )  j; depends linearly on j2,  in 
accordance with eqn. (31).  For 0 < k  < v  (curve 2)  j: is given by eqn. (30).  

When the ratio k / v  goes to zero, the point Q in Figs. 1 and 4  tends to the vertical 
axis along the horizontal line j1  = 2. The curve j y  merges with the straight line 
j y  = j2 + 2 which corresponds to the theory of the migration current exaltation 
effect [3 ] .  

When the medium in the bulk solution is not acid but alkaline, k  in the 
boundary condition must be set equal to zero: k  = 0 ,  m > 0 .  Concentration distribu- 



tions throughout the diffusion layer are given by eqns. (6 ) ,  (7), (10)  and (14 )  and the 
boundary conditions (11).  It can be shown easily that the limiting current j,' of 
cation discharge is given by the same relation as for a neutral medium ( k  = O ) ,  
jy = j, + 2, and it does not depend on the concentration of OH- ions in the bulk 
solution. 

Thus, in the system considered we have found an unusual behavior of the 
concentration of discharging cations within the diffusion layer. The concentration 
profile c , ( x )  under certain conditions has a minimum, and this makes it possible for 
c 1  to become zero for a certain value x  = 8 within the diffusion layer. Such behavior 
of c 1  is due to the great influence of two factors upon the process of cation feed to 
the electrode: first, the parallel process of oxygen reduction and, second, the 
homogeneous reaction of OH- and H +  ions recombination within the diffusion 
layer. 

The generalized condition of the generation of limiting current in the system at 
issue is given by 

and, as the conducted investigation shows, may be realized both at the electrode 
surface x  = 0 and, "breaking off '  from the electrode and going into the diffusion 
layer, at the point x = 8 < 1. 

Note that for v # 1  (i.e. D, # D,), in the region x  = 8  where the reaction of OH- 
and H C  ion recombination proceeds, an abrupt change of the values of the electric 
field E and of dE/dx  takes place. In this region, as predicted by the Poisson 
equation, anomalies in the spread of space charge must be observed. In particular, 
when G = c , ( 8 )  tends to zero, a sharp peak of space charge is formed within the 
diffusion layer. The possibility of forming a space charge peak upon the electric 
current flow was predicted for systems which, apart from mobile charges, also have 
fixed charges [10-1 1]. 

(4) CORRECTIONS TO THE DIFFUSION-MIGRATION CURRENT J ,  OF CATION REDUC- 
TION IN THE CASE O F  SMALL CURRENTS j, 

The investigation carried out in the previous section essentially used the condi- 
tion that the rate of H +  and OH- in recombination is rather high and, hence, that 
the reaction zone lies near the point x  = θ .  Besides, the approximation of small 
dissociation constant, c 2  5: 0, was used. This has led to the fact that at the point 8 
the concentrations c ,  and c, tend to zero, and other concentrations have a kink. In 
a stricter statement of the problem which uses relation (13), the concentrations fall 
down not to zero but to rather small values of the order of r ,  and the profiles of all 
the concentrations retain their smoothness. Although all the salient features of the 
distributions of ionic components revealed remain valid, to make a comprehensive 
picture of the process, it is desirable to determine the concentration distributions for 
small but finite values of c << 1. 



Fig. 5. Distribution of the component concentrations given by eqns. (10). (41) and (42) for j2  = 0 and 
c = 0.1. 

Fig. 6. The limiting current jf as a function of j2 for J ,  << 1 and for (1) c = 0.01; (2)  c = 0.02; (3) 
c = 0.05; (4) ε = 0.1. 

In this section and sections to follow, we will confine ourselves to the case of 
neutral solutions, c3(l) = c,(l), wherefrom, through the use of relation (13), we can 
write the boundary conditions (11) as 

c , ( l )  =c2(1)  = 1 ,  c3(1) = c 4 ( l )  = c ,  \k ( l )  = 0  (37) 

Apart from that, we will concern ourselves with the case of the cation limiting 
current: 

c, (0) = 0 (38) 

First, let us find the solution corresponding to j2 = 0. Substituting eqn. (13) into 
eqn. (12) and making some simple transformations, we find that in this case there 
occurs neither the H +  cation transfer nor the transfer of OH- : 

dc4 d\k 
- +    c  - = o  d x  4 d x  

Adding together eqns. (7) and (39) and introducing the overall concentration of 
anions, we come to Eucken's problem [9]. The concentration distributions are shown 
in Fig. 5. The potential \k is a logarithmic function of the distance x :  

and the concentrations c, and c, decrease linearly on approaching the electrode: 

c2 = eΨ c3 = ce '4' (42) 

but they do not take zero values at the electrode: c,(O) = &, c,(O) = c3I2. Note that 



for the system in question this is a general rule: the concentrations of all compo- 
nents, except c1, cannot simultaneously become zero at the electrode in the limiting 
current regime owing to condition (11). This leads us to the fact that the gradient of 
the potential and the potential itself are also finite, as follows from eqn. (7). Thus, in 
the system under consideration, with due account of dissociation, there is no 
logarithmic divergence of the potential which is typical for calculations of the 
limiting current in electrodiffusion problems. 

Since it follows from eqns. (13) and (42) that c, = ce-', the inequalities 

hold true practically throughout the whole diffusion layer. The value of the limiting 
current is given by Eucken's formula in the form 

Let us now find the solution for small but non-zero values of j, such that 
inequalities (43) and (44) still hold. Neglecting c, in eqn. (12) in comparison with c,, 
we may recast eqn. (12) as 

By introducing the overall concentration of anions we reduce this problem to the 
problem of the discharge of two kinds of cation c1 and c, against the motionless 
background of anions, that is to the problem of the migration current correlation 
exaltation resolved in refs. 4 and 7. The corresponding dependence of the limiting 
current j1 upon j, is 

The curves j,( j,) described by eqn. (47) for j, << 1 and a number of different values 
of c are presented in Fig. 6. When j, = 0, eqn. (47) changes into eqn. (45). We stress 
that, according to eqns. (45) and (47), the limiting current j1 is reduced by a factor 
proportional to c ' I2 when recombination of OH-  and H' ions is taken into 
consideration. 

Let us now proceed to the description of the general solution of the full system of 
equations without a prior assumption that c is small. 

(5) GENERAL SOLUTION O F  T H E  PROBLEM FOR j, # 0 

Our goal is to calculate the value of the limiting current j1, from the system of 
three differential equations (eqns. 6, 7 and 12), two algebraic equations (eqns. 10 
and 13), and the boundary conditions (eqns. 38 and 39). 



By substituting eqns. ( 1 0 )  and ( 1 2 )  into condition ( 1 3 )  we can eliminate the 
concentration c4: 

c 1 + ε 2 / c 3  = c2 + c ,  ( 4 9 )  
When r  + 0 ,  this system transforms into the system of equations from ref. 5  which 
takes no account of water dissociation and the solution of which leads to the 
expression for limiting currents (eqn. 3 ) .  

The right-hand side of eqn. ( 4 8 )  is a non-linear function of c 3 ,  and that is why the 
system of eqns. ( 6 ) ,  (7), ( 4 8 )  and ( 4 9 )  cannot be reduced to a linear system by 
converting to a new independent variable \k, as was done in ref. 4 .  Therefore, the 
stated problem requires new methods of integration of the system of non-linear 
differential equations under consideration. 

Eliminating d\k/dx from eqns. ( 5 )  and ( 4 8 )  by means of eqn. (7), we obtain 

where 
w = C , C ,  v = c 2 / c 3  ( 5 2 )  
are dimensionless combinations of the concentrations. Expressing c 1 and c 2  in 
terms of c , ,  W  and V from eqn. (52) ,  and substituting them into eqn. ( 4 9 ) ,  we can 
express c ,  in terms of W  and V: 

Thus, by means of eqns. (49) ,  ( 5 2 )  and ( 5 3 ) ,  the concentrations of all components 
of the solution are expressed in terms of W and V,  and the system of eqns. ( 5 0 )  and 
( 5 3 )  includes only the functions W and V in a fairly complicated way. 

The boundary conditions for W and V take the form: 

w I ,=, = 1 ,  v I ,=, = I / €  ( 5 4 )  
W I , = o = O  ( 5 5 )  

Dividing eqn. ( 5 0 )  by eqn. ( 5 1 ) ,  we can convert to the independent variable V: 

where J = j , / j 2 .  The derivation of eqn. ( 5 6 )  uses eqn. ( 5 3 ) .  Equation ( 5 6 )  is a first 
order linear non-homogeneous equation. Its solution satisfying the boundary condi- 
tions ( 5 4 )  for x = 1  may be written as 



where Wo(V) is the solution of the homogeneous equation satisfying the boundary 
conditions (54): 

Thus we find W(V), by means of which, through eqns. (52) and (53), we can 
obtain the concentration distributions for all components as functions of the 
independent variable V, provided that we already know J. To find J, it is necessary 
to use boundary condition (55). After the integration of eqn. (51) we have 

Here, V * is the value of V corresponding to x = 0, where, according to eqn. (55), 
W(V*) = 0. 

Since, as it is clear from (58), Wo(V) does not vanish for positive V, the condition 
for finding V * is that the expression between brackets in eqn. (57) is equal to zero: 

Thus we can determine the limits of integration (from eqns. 60 and 58) and the 
integrand (from eqns. 53, 57 and 58). Taking integrals in the right-hand side of eqn. 
(59) we get some function of the current ratio J in this right-hand side. Finally, 
from the equation obtained we can express j, as a function of j, and thus find the 
generalization of eqn. (3) for the case of migration current exaltation with proper 
account of recombination of H +  and OH-  ions. 

The procedure described makes it possible to find the solution of the stated 
problem by quadratures. In order to determine the relation between j1 and j,, one 
has to take the integrals in eqns. (57), (59) and (60) analytically. For the integral in 
eqn. (57) this is possible only for some special values of J. (The integral in eqn. (57) 
may be taken only for integer and half-integer J, and the integral in the right-hand 
side of eqn. (59) cannot be taken analytically.) Below we give an approximate 
solution of the problem which uses the smallness of the parameter c. 

( 6 )  APPROXIMATE SOLUTION FOR 1 < J < 2 

In order to find an approximate analytical solution of the problem we can make 
use of the smallness of the parameter ε :  c << 1. Our goal is to find the correction 
term to the right-hand side of eqn. (3) as a function of both c and j,. Viewing eqn. 
(3) as the zero-order approximation, we can say that the condition J < 2 corre- 
sponds to the currents j, > 2. The region J > 2 or 0 < j2 < 2 corresponds to the 
transition region from j, = 0 to j, > 2, where the correction terms have the inter- 
mediate values between the terms of the order of 6 for j, = 0 and the terms of the 
order of E for j2 > 2, as will be shown below. Note that the condition J > 1 or 
j1 > j, is satisfied up to very large values of j2 - 1/c >, lo3, i.e. in the whole range of 



the parameter j, of interest to us. For V >> V *, up to the terms of the order of c, we 
can write 

W ( V )  = [ I  + CJ(I - l / v ) ]  [ v / ( l +  v ) ]  

and for V > V * 

where 

is small. Integrating eqn. (59) over ln V, we replace the limits of integration by 
ln(l/c) and ln(V* ) which, unlike 1/c and V *, can be considered to be of the order 
of unity. Therefore, the range of integration is of the order of unity. This corrobo- 
rates our decision to leave in the integrand quantities of the order not lower than 
that of c ,  for we are interested only in the first correction term to eqn. (3) in terms 
of c. Substituting eqns. (61) and (63) into the right-hand side of eqn. (59) and 
integrating, we obtain an equation which gives the j1( j,, c) dependence implicitly 

where 

The first term in the right-hand side of eqn. (64) corresponds to the zero-order 
approximation (eqn. 3), and the second term is a small correction. Therefore, eqn. 
(64) may be solved for j1 by the successive approximation method. First, we find J 
in the zero-order approximation: 

J O  = ( j ,  + 2)/j2. (66) 

Multiplying eqn. (64) by J - 1 and substituting J O  for J in the right-hand side of 
the equation obtained, we get 

a final expression, which is the generalization of the result (eqn. 3) obtained earlier. 
The dependence j1( j,) described by eqn. (67) is presented in Fig. 7 together with the 
function (eqn. 3). 

(7) NUMERICAL SOLUTION OF THE PROBLEM 

The system of eqns. (50) and (51) with the boundary conditions (54) and (55) was 
also solved by numerical integration. The algorithm was as follows. For fixed j1and 



Fig. 7. The dependence of jl on j2: curve 1 is described by eqn. (3); curves 2 and 3 correspond to eqn. 
(67) for c = 0.05 and r = 0.1. 

j, the system of eqns. (50), (51) with the boundary condition (54) was integrated by 
the Runge-Kutta method. There are two possibilities during integration: either the 
values of W or V become negative (a detailed analysis shows that it happens 
simultaneously) at a certain step for the coordinate x ,  or the relation W ( x  = 0 )  > 0 
holds true. For a fixed j, the realized possibility was determined only by the value 
of j1. Therefore, we may suppose that there is a certain function of j1, the root to 

Fig. 8. Distribution of the component concentrations obtained by solution of the system of eqns. (50) and 
(51) for j2 = 4, r = 0.05 and jl equal to the limiting current. 



which W(x = 0) = 0 corresponds. To find the root of this function, the half-segment 
method was used. Comparison of the analytical dependences j1( j2 )  by eqn. (67) 
with the results of computations for different values of e shows their good concor- 
dance. Fig. 8 presents the concentration profiles c, for different components 
obtained by numerical solution of the problem. 

CONCLUSION 

This analysis has shown that the effect of OH-  and H+ ion dissociation in 
neutral solutions is more visible for j2 << 1, when the limiting current of cation 
reduction decreases by a factor of the order of 6. For large currents j, > 2, this 
decrease is of the order of e .  Numerical calculations for the intermediate region 
e < j2 < 2 have shown that the decrease of the limiting current of cation reduction 
has the order intermediate between & and e and is a smooth function of the current 
of the neutral substance reduction. 

In cases where the processes considered occur in acid solutions, the process of 
OH-  and H +  ion recombination is more pronounced, and for sufficiently high pH 
the resulting exaltation current approaches the value described by the theory of the 
migration current correlation exaltation effect [4]. It was found that for sufficiently 
high concentrations of H' in the solution an unusual limiting diffusion-migration 
current of cation discharge may be observed which is due to the fact that their 
concentration falls to zero within the diffusion layer. 
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