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The paper examines the influence of recombination of the OH- and H+ ions on the effect of migration- 
current exaltation observed when cations and a neutral substance are reduced in parallel [1, 2]. 
Approximate analytical solutions and numerical computer solutions were obtained for the corresponding 
system of electrodiffusion equations. It was shown that for realistic values of the equilibrium constant 
of water dissociation and recombination, the inclusion of recombination leads to a relatively small 
correction to the theory of migration-current exaltation developed in [3-5]. 

INTRODUCTION 

The phenomenon that the limiting current of cation reduction increases when a neutral substance is reduced at 
the same time was detected experimentally in 1936 [1], and was called the effect of migration-current exaltation. A 
quantitative discussion of migration-current exaltation was given in [2]. The irreversible reduction of Na+ ions from 
dilute NaCl solutions was studied. First the polarographic wave corresponding to the discharge of Na+ ions was recorded, 
then the solution was saturated with air oxygen and a new polarographic wave was recorded. In the second case the 
limiting current was found to be higher than the sum of the oxygen reduction current and of the limiting current of Na' 
reduction in the absence of oxygen. 

In [3-5] a theory of the exaltation effect was proposed which allows for the fact that as a result of reduction of 
a neutral substance (eg, 02) ,  negatively charged products appear in the diffusion layer (eg, OH-). These products may 
be absent from the bulk solution, but the system of electrodiffusion equations describing the parallel processes should 
include an equation for said anions. In cases where all ions in the system are monovalent the limiting current density, 
jl, of cation reduction depends on the current density, jo, of reduction of the neutral substance as follows: 

where Dl and D3 are the diffusion coefficients of the cations and of the reduction products of the neutral substance, 
respectively, co is the cation concentration in the bulk electrolyte, L is the Nernst diffusion-layer thickness, and F is 
the Faraday constant. Introducing the corresponding dimensionless fluxes I. and 11: 

one can rewrite Eq. (1) more simply as 

Thus, the current of cation discharge increases linearly with the reduction current of the neutral substance. 
It had not been taken into account when deducing Eq. (1)  that the OH- ions appearing at the electrode upon 

reduction of the neutral substance could recombine with the H+ ions present in water. These reactions are known to be 
relatively fast, so that one can assume sufficiently correctly that the equilibrium 

is established in the diffusion layer; here K is the equilibrium constant, which has a value of 10-l4 (mole/~i ter)~.  
It was the aim of the present work to investigate the influence of dissociation and recombination of the OH- and 

H+ ions on the phenomenon of migration-current exaltation. 
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FORMULATION OF THE PROBLEM 

Allowing for water dissociation and recombination, one can describe the effect of migration-current exaltation 
arising in the parallel reduction of cations and a neutral substance (oxygen), in terms of the Nernst diffusion-layer 
model by the system of electrodiffusion equations (all ions are regarded as monovalent, for the sake of simplicity): 

dc, dY -- - C!4- = 0, 
dx  d x  

Here c1, c,, c,, c4 are the concentrations of the cations ( ~ a ' ) ,  anions (C1-), reduction products of the neutral substance 
(OH-), and conjugate products of water dissociation (H'), respectively, Dl(/ = 1-4) are the corresponding diffusion 
coefficients, '4' = Fp/RT is the dimensionless potential, x (0 < x < 1 )  is the dimensionless coordinate (made dimensionless 
through the Nernst diffusion-layer thickness L), A1 = AI(x) is the change in flux of the H+ and OH- ions on account 
of water dissociation and recombination, jl is the current density of cation discharge, co is the salt concentration in the 
bulk solution, and jo is the current density of reduction of the neutral substance. 

The system of four differential equations (4) to (7) must be supplemented by the electroneutrality condition: 

and by the condition of equilibrium in the water dissociation reaction: 

where e2 = K / c ~ ~  is the dimensionless equilibrium constant, which in the following will always be assumed to be a small 
quantity: E << 1. We shall assume that in the bulk solution H+ and OH- are present in equal concentrations (neutral 
solution): c,(l) = c4(l). From this condition and from relations (8) and (9) the boundary conditions for all cJx) ( I  = 1-4) 
are obtained thus: 

In the case of interest to us, ie, the limiting current of the cations being reduced, the relation 

should hold. 
We notice that by virtue of condition (9), the concentrations of all other components cannot simultaneously 

become zero at the electrode under limiting-current conditions. As a result, the potential gradient and the potential itself 
also remain finite, according to (5). Thus, in the system being discussed where dissociation is taken into account, the 
logarithmic divergence of potential usually encountered in electrodiffusion problems when calculating the limiting 
current is missing. 

Subtracting (7) from (6) and transforming the resulting equation as well as the condition (8) while allowing for 
(9) one can eliminate concentration c4 from the system of equations: 



Fig. 1 F i g  2 
Fig. 1. Plots of I1 against I0 for I, << 1 and &-values of: 1) 0.01, 2) 0.02, 
3) 0.05, and 4) 0.1. 

Fig. 2. Component concentration distributions obtained from relations (9), 
(13), (17), and (18) for I, = 0 and E = 0.1. 

where Y = D4/DS -- 2 is the ratio of diffusion coefficients of H+ and OH-. For E -+ 0 the system of Eqs. (4), (5), (12), 
(13) changes into the equations of [3] where water dissociation is disregarded, and which when solved yield expression 
(3) for the limiting currents. 

The right-hand side of Eq. (12) is a nonlinear function of cS, and hence the system of Eqs. (4), (5), (12), (13) 
cannot be reduced to a linear system by changing to the new independent variable Q as done in [4]. Thus, the problem 
formulated here requires the development of new methods for integrating the system of nonlinear differential equations. 

THE SOLUTION IN THE CASE OF  I. << 1 

At low I0 << 1 one can assume when allowing for the fact that the OH- ions are generated owing to currents Io, 
and in view of equilibrium condition (9 ) ,  that concentration cs is small as compared with c4, practically everywhere in 
the diffusion layer, to the exclusion of a very narrow region near x = 1. We therefore neglect cs relative to c4 for lo << 1, 
and instead of (12) obtain the simplified equation 

The resulting system of Eqs. (4), (5),  (13), (14) was solved in [6]. The corresponding relation for the limiting 
current I, as a function of I0 is given by 

For I. = 0 the limiting current I, is given by the relation 

?,=2(1+&) (1- | /ε / (1+ε))  

The plots of I, against I. for I. << 1 which correspond to relation (15) are reported for a number of values of parameter 
E in Fig. 1. 

We stress that the limiting current 1, decreases by an amount proportional to &when the recombination of OH- 

and H+ ions is taken into account. Moreover, for an IO-value which is strictly zero, the original system of Eqs. (4), (5), 
(12), (13) can be solved analytically without the assumption that c, << c4. It follows immediately from (5) and (12) that 

Eliminating cl from (13) with the aid of c, and c, and substituting into (4) we obtain an equation for dq/dx which is 
readily integrated: 



Using condition (1 1) we can find a value of the limiting current which coincides with (16). The distribution of 
component concentrations in the diffusion layer is shown for the case of I0 = 0 in Fig. 2. One can see that the 
concentrations c and cs decrease linearly as one comes closer to the electrode but do not become zero: ~ ~ ( 0 )  ~ ~ ( 0 )  a 
&and cs(0) ~~ .s'/~. It must be pointed out, moreover, that practically everywhere in the diffusion layer the inequali- 
ties of c3 << c, as well as cs, c4 << c1, cz hold true. 

GENERAL SOLUTION FOR I, # 0 

It had already been pointed out above that in the case of I0 <>0 the system (4). (5), (12), (13) cannot be integrated 
by the method described in [4]. This system can be solved in quadratures as follows. 

Eliminating dlkldx from (4) and (12) with the aid of (5) we obtain 

where we have introduced the dimensionless concentration combinations 

Eliminating cl and c2 from (21) with the aid of c3, W, and V and substituting into (13) one can state cS in terms of W 
and V: 

Thus, using (9 ) ,  (21), and (22) one can state the concentrations of all solution components in terms of W and V, 
and system (l0), (20) only contains the functions W and V, though in a rather complex way. The boundary conditions 
for W and V become 

Dividing (19) into (20) we can change to the new independent variable V: 

where a: = 11/10 is the ratio of the currents. Relation (22) was used in deriving (25). Equation (25) is a first-order linear 
inhomogeneous equation. Its solution which for x = 1 satisfies boundary conditions (23) can be written as 

where W,(V) is the solution of the homogeneous Eq. (24) satisfying the boundary conditions (23): 

We thus find the function W(V) which can be used, together with (21) and (22), to obtain the concentration 
distributions of all components as functions of the independent variable V under the condition that α is known. To find 
α one must use boundary condition (24). Integrating (24) we obtain 

~ ~ ( 0 )  



Here V* is the value of V which corresponds to x = 0 where, according to (24), one has w(v') = 0. One can readily see 
from (27) that for positive V, W(V) will not become zero; therefore, the condition that is used to find V* is a zero value 
of the term in square brackets in (26): 

Thus, for (28) one can find the integration limits (from (29), (27)) and the function under the integral sign (from 
(22), (26), (27)). Integrating in the right-hand side of (28) we obtain some function of the current ratio α. From the 
resulting equation, finally, one can extract I, as a function of I0, and obtain  the generalization of relation (3) to the case 
of migration-current exaltation which includes the recombination of the H+ and OH- ions. 

Thus, a solution of the problem formulated has been obtained in quadratures. To obtain I1 as a function of I, 
one must analytically evaluate the integrals contained in (26), (28), and (29). This is possible for the integral of (26), 
only with certain special values of α, (The integral of (26), which is contained in (28). can be evaluated only for integer 
and semiinteger values of α, while the integral on the right-hand side of (28) cannot be evaluated in an analytical form.) 
Below we report an approximate solution of the problem which utilizes the fact that parameter E is small. 

APPROXIMATE SOLUTION FOR 1 < α < 2 

For the purposes of finding an approximate analytical solution of the problem one can utilize the fact that 
parameter ε is small: ε << 1. It will be our aim to find a correction term for the right-hand side of expression (3) which 
is a function of both ε and I,. Regarding (3)  as zeroth approximation one can see that the condition of α < 2 corresponds 
to currents I, > 2. The region of α > 2 (or 0 < I0 < 2) corresponds to the transition region between I, = 0 and I. > 2 where 
the correction terms have values intermediate between terms of the order of fi for I0 = 0 and terms of the order of ε 

for I. > 2, as will be shown below. We point out that the condition of α > 1 (or I1 > I,) is fulfilled up to very large values 
of I, - 1 / ~  2 loS, ie, throughout the range of values of parameter I. of interest to us. For V >> V* one can write 

which holds to terms of the order of E ,  but for V > V* one has 

where 

ae' (v)=-'= - ( v+ l )  
a-i 

is a small quantity. When changing, in (28), to an integration over ln V we can replace the limits of integration by 
In ( 1 1 ~ )  and ln v*, which in contrast to the values of 1 / ~  and V* themselves can be regarded as quantities of the order 
of unity. The region of integration thus has a size of the order of unity, which implies that we are justified in 
suppressing terms smaller than E in order of magnitude in the function under the integral sign, since we only are 
interested in the first correction to (3) with respect to ε. Substituting (30) and (31) into the right-hand side of (28) and 
integrating we obtain an equation which implicitly defines the function I,(I,, ε): 

2 ε I,=..--- 
a-l a-i f ( a > ,  

where 
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Fig. 3. Comparison of the approximate analytical I1 vs I, functions for 
I, > 2 with the functions obtained numerically; curve 1 is that defined by 
relation (3), curves (2) and (4) correspond to (36) for E = 0.05 and E = 0.1, 
curves 3 and 5 were computer-calculated for E = 0.05 and E = 0.1. 

Fig. 4. Component concentration distributions obtained by numerical 
solution of the system of Eqs. (19). (20) for I, = 4, E = 0.05, and I1 equal 
to the limiting current. 

The first term on the right-hand side of (33) is the term corresponding to the zeroth approximation of (3), while the 
second term represents a small correction. Hence Eq. (33) can be solved for I, by the method of successive 
approximations; first we find a in the zeroth approximation: 

Multiplying (33) with (α - 1) and replacing α by a, in the right-hand part of the resulting expression we obtain 

ie, the conclusive expression representing the generalization of the result (3)  that had been obtained previously. The 
function I,(I,) defined by expression (36) is shown in Fig. 3 together with function (3) and the results obtained by 
numerical solution of the problem. 

NUMERICAL COMPUTER SOLUTION OF  THE PROBLEM 

The system of Eqs. (19), (20) with the boundary conditions (23), (24) was also solved by numerical integration 
with a computer. The algorithm for the solution was set up as follows. For fixed I, and I,, the system (19), (20) with 
boundary conditions (23) was integrated by the Runge-Kutta method. Two versions could be realized in the integration: 
either the values of W or V became negative in some step along coordinate x (a detailed analysis showed that this occurs 
simultaneously), or the relation of W(x = 0) > 0 was fulfilled. For fixed I0, the variant to be realized was determined 
only by the value of I1. One thus can claim that some function of I1 exists which has a root corresponding to 
W(x = 0) = 0. To find the root of this function we used the method of divided differences. The results obtained when 
numerically calculating function I,(I,) are shown in Fig. 3. One can see when comparing the approximate analytical 
functions I1(Io) of (36) with the numerical calculations for different values of parameter E that these are in fair 
agreement. Figure 4 shows the profiles of component concentrations c, obtained by numerical solution of the problem. 

CONCLUSION 

Thus, the above analysis has shown that the effect of dissociation of ions OH- and H+ is most important for 
I0 << 1, where the limiting current of cation reduction decreases by an amount of the order of 6. At large currents, of 
I0 > 2, the decrease in the limiting current of cation reduction is of the order of E .  It was seen from numerical 
calculations in the region of E < I, < 2 that the limiting-current decrease is intermediate between @and E in order of 
magnitude, and is a smooth function of reduction current of the neutral substance. 



We also point out that when the processes discussed occur in acidic solutions the recombination of OH- and H' 
ions will have more important effects, and at sufficiently high pH the resulting exaltation current should approach the 
value described by the theory of correlative migration-current exaltation [6]. 
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