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Ionic transport by diffusion and migration is analyzed theoretically for reduction of cations occurring 
in parallel with the reduction of molecular oxygen while allowing for the recombination of OH- and H+ 
ions in the diffusion layer. It is shown that qualitatively different types of behavior of the system being 
discussed are possible depending on the relative concentrations of the cations undergoing discharge and 
of the H+ ions in the solution. It was discovered that under certain conditions the cations may exhibit an 
unusual limiting diffusion and migration current because their concentration has fallen to zero inside the 
diffusion layer. 

An effect of migration current exaltation can be observed when cations and a neutral substance are reduced in 
parallel; then the limiting current of the first process increases with increasing current of the second process [1-3]. The 
theory of this effect was developed in [4-6]. A physically related effect of increasing limiting currents is observed when 
cations of two or more different kinds are reduced in parallel; this has become known as correlational exaltation of 
migration currents [5, 7]. 

It has been assumed in [4] when developing a theory for the effect of migration current exaltation that the 
reduction products of the neutral substance are not present in the bulk solution. In oxygen reduction according to the 
scheme of 

these products are the OH- ions. In [8] a theory of migration current exaltation was developed where it was taken into 
account that owing to water dissociation in the solution a very small but finite concentration of H+ ions is present and 
that these ions can recombine with the OH- ions as the products of oxygen reduction. 

It was the aim of the present work to theoretically analyze cation reduction and reduction of oxygen dissolved 
in water as processes occurring in parallel at arbitrary values of solution pH. The OH- ions produced by O2 reduction 
then should recombine with the H+ ions in the diffusion layer. At low H+ ion concentrations in the solution the resulting 
process is expected to be very similar to that observed in migration current exaltation. In the other limiting case where 
the H+ ion concentration in the solution is high one can expect that practically all OH- ions will react with H+ directly 
at the electrode surface, so that the resulting oxygen reduction reaction will be 

Then we have the parallel reduction of solution cations and H+ ions which is described by the theory of correlational 
migration current exaltation. At intermediate H+ ion concentrations in the solution one expects a changeover from the 
situation described by the effect of migration current exaltation to that described by correlational migration current 
exaltation. 
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The system of electrodiffusion equations describing the reduction of cations A+ according to 

and parallel reduction of oxygen according to reaction ( 1 )  with subsequent recombination of the OH- with H+ within 
the Nernst diffusion layer, is given by 

dc I L  --1- clF =A = j , ,  
d r  ED1c0 

Here c,, c2, c3, cq are the concentrations of cations A+, anions, OH- ions, and H+ ions made dimensionless through the 
A+  ion concentration c0 in the bulk solution (we assume, for the sake of simplicity, that the ions present in the system 
are univalent), 8= -dq/dx = -F/RT-dE/dx is the dimensionless electric field, x is the dimensionless coordinate 
(0 I x I l ) ,  L is the thickness of the Nernst diffusion layer, Di are the diffusion coefficients of the corresponding 
components, I ,  is the current of cation discharge, F is the Faraday constant, K is the rate constant of recombination of 
the H+ and OH- ions, and KO is the equilibrium constant of water dissociation made dimensionless through (C')~. 

Equation (8) is a statement of the condition of local electroneutrality. 
The boundary conditions for x = 1 (the boundary between the diffusion layer and the bulk solution) are 

Combining (6) and (7)  one can obtain 

Here I2 is the current of oxygen reduction. 
We now take into account that the rate constant of recombination of the H+ 

( 1  0) 

and OH- ions is extremely high, so 
that at any point of the diffusion layer one can assume equilibrium with respect to the dissocation and recombination 
of water: 

We shall assume in addition that the equilibrium constant itself when made dimensionless through ( c O ) ~  is much smaller 
than unity. For instance for c0 = 0.1 M the value of KO = 10-12. Hence instead of relation (1 1) one can highly accurately 
use the equality of c,c, FJ 0. In the region to the left of x = 0 (the "point" of recombination of the H+ and OH- ions) one 
then has c3 > 0 and c4 w 0 while in the region to the right of x = 0 one can assume that c, > 0 and c3 = 0. Using these 
approximations one can change from Eqs. (10) and ( 1  1) to the two equations 

where v = D,/D4. We mention that the dimensionless fluxes j, and j2 introduced in (4) and (12) are positive. 
Thus, the original system of electrodiffusion equations (4) to (8) has been resolved into two simpler systems of 

first-order equations. In the region of 0 < x < 0 the system of equations is given by relations (4), ( 5 ) ,  (12), and (8), and 
coincides with the system used to describe the effect of migration current exaltation. In the region of 9 < x < 1 the 
system of equations is given by relations (4), (5) ,  (13), and (8) and coincides with the system used to describe the effect 



of correlational migration current exaltation. 
In the point of x = 0 all concentrations ci should be continuous. The point 9 itself can be found simultaneously 

with the solution of the system of electrodiffusion equations. According to what has been said above, its position should 
depend, both on the values of currents Il and I2 and on the parameters v and k, ie, on the H+ ion concentration in the 
solution. As the latter is raised the point x = 9 should move closer to the electrode, and at sufficiently high H+ 
concentrations when reaction (1) is replaced by reaction (2) θ should become zero. 

We start our inquiry with the case where the point x = θ is located in the interval (0, 1). We shall find the 
concentration distributions c,(x), c2(x), c3(x), and c4(x) in the two regions 0 < x < 9 and 6' < x < 1. 

The concentration distribution c2(x) in region 9 < x < 1 is readily obtained by addition and subsequent 
integration of Eqs. (4), (5), and (8) while allowing for boundary conditions (9): 

Using (14) we find from Eq. (5) 

&'=- f l  + % (15) 
~ ( l + k ) - i - ( j , + v j , ) ( ~ - - 1 )  ' 

Substituting (15) into (4) and integrating the resulting linear equation while allowing for (9) we obtain the cation 
distribution cl(x) in the region of θ < x < 1: 

The concentration distribution c,(x) in the same region follows from the electroneutrality condition (8) and the condition 
of c3(x > θ) = 0. For x = 8 the values of concentrations cl and c2 given by relations (14) and (16) assume identical values 
of 

because of the condition of c,(9) = c4(8) mentioned above. 
When finding the concentration distributions ci(x) in the region of 0 < x < 9 we shall use the continuity relations 

as boundary conditions at x = 9. The two conditions (17) represent a system of equations from which one can determine 
the unknown quantities θ and G: 

The solution of the system of Eqs. (4), (5), (8). and (12) with boundary conditions (18) in region 0 < x < 9 can be found 
by a method similar to that used in [4], and is given by the relations 

The distributions of all component concentrations and of potential in the full coordinate region of 0 5 x 5 1 are 
given by re1ations (14) to (16), (18) to (23), and (8) when 

and 



Fig. 1 Fig. 2 

Fig. 1. The regions of different behavior of the system in the plane of j, and j2 for k < v: 
1) the curve of j,4j2) defined by relation (28); 2) the curve for I9 = 0 defined by relation 
(27); 3) the straight line for G = 0 defined by relation (31); and 4) the curve of jlh(j,) 
defined by relation (30). 

Fig. 2. Concentration distributions c,(x) (curves 1 to 5) and c,(x) (curves 4' and 5'). 
Curves 1 and 2 correspond to region II, curves 4, 4', 5, and 5' correspond to region I, and 
curve 3 corresponds to the condition of 19 = 0. 

We point out that inequality (24) must be fulfilled, both for the existence of G (see (19)) and for the existence 
of 6 (see (20)). It is readily seen that the condition of 6' 5 1 imposes no additional limitations upon the parameters u, 
k, j,, j2. At fixed j,, the value of I9 defined by relation (20) generally will decrease with increasing jl. The condition 
of I9 = 0 leads to the following relation between jl and j,: 

Allowing for inequality (24) has the effect that j, in (27) can vary within the limits of 0 r j, 3 2. Quantity uj, 
in (27) then changes from the value of vj, = 2 JI+k(J= - 1 )  which is found for jl = 0 to the value of vj2 = 2k when 
j, = 2. In the plane of (j,, j,), the condition of 0 < I9 I 1 corresponds to region I in Fig. 1 which is located to the right 
of the curve jl(j2) defined by relation (27). 

Consider now in more detail the situation when oxygen reduction follows the scheme (2), and OH- ions are not 
present in the diffusion layer. Then the distributions of c,, c2, c,, and 8 throughout the region of 0 r x r 1 are 
described by Eqs. (4), (5), (13), and (8) and boundary conditions ( 9 ) ,  the solutions of which are given by relations (14), 
(16), and (8). The values of surface concentrations c,(O) and c,(O) depend, both on parameters u and k and on the values 
of currents j l  and j . One can assume, in accordance with the generally adopted definition of limiting currents, that the 
limiting current, j A  of cation reduction corresponds to the condition of c,(O) = 0. This current depends on current j2 
of parallel oxygen reduction. The dependence of j Ieon j2 follows from (16) and the condition of c,(O) = 0, and is given 
by the relation [7]: 

shown in Fig. 1. At j2 = 0, the curve of j,?j,) issues from the point of 



Fig. 3. Different types of distribution of the ionic component concentrations 
corresponding to region I in Fig. 1: a) current j, lower than the limiting value and 
c,(O) > G; b) current jl lower than the limiting value and cl(0) < G; c) current j, equal 
to the limiting value while cl(0) = 0; and d)  current jl equal to the limiting value while 
~ ~ ( 6 )  = 0. 

which corresponds to Eucken's relation [9], and when vj2/k = 2 goes through the point Q where jlL = 2 and where it links 
up with the curve (27) and the straight line of j, = uj2/k. For j, < jlL and c4(0) > 0 the system's behavior corresponds 
to region II in the plane of jl and j2 in Fig. 1. Concentration c,(O) decreases with increasing current jz when current jl 
is constant (see Fig. 2, curves 1 and 2). When the condition of c4(0) = 0 is fulfilled, which is readily seen to coincide 
with the condition of 8 = 0 (curve 3 of Fig. 2), we reach the right-hand boundary of region II that is described by 
relation (27). We stress that c4(0) becoming zero does not imply the onset of a limiting current of oxygen reduction but 
corresponds to a change in mechanism of the electrode reaction from scheme (2) to scheme (1) turning on the generation 
of OH- ions and the ensuing homogeneous recombination of OH- and H+. Upon further increase in j2 in region I, the 
point of x = 0 which is determined by relation (20) moves to the right (curves 4 and 5 in Fig. 2) while the OH- ions 
generated at the electrode are distributed over the region of 0 < x < θ 

We now shall examine region I in Fig. 1, and analyze the changes in cation concentration cl(x) which occur at 
fixed current j2 when their reduction current j, changes. 

For j, = 0 concentration cl(x) decreases linearly with increasing x in the region of 0 < x r θ and it continues 
to decrease in the region of 8 r x I 1. As current j, increases concentration cl(x) in region 0 < x 5 8 varies linearly 
as before, and both c,(O) and c,(8) = G decrease with increasing j,. At sufficiently high values of j, > vj2/(l + 2k) a 
minimum appears in the function c,(x) in the region of 8 I x 5 1 (at x = 8') which is determined by the relation 

As j, increases further the situation can arise (for jl > j2) where cl(0) becomes smaller than G (see Fig. 3b). The 
condition of c,(O) = 0 where cl is given by relation (21) corresponds to the generally adopted definition of limiting 
currents, jlh, of cation discharge and leads to the following relation: 



Fig. 4. Limiting currents, jlL, of cation discharge as func- 
tions of current j,: 1 )  k = 0, 2) 0 < k < v, 3) k =.v, and 
4) k > v. 

where quantity J = j2/jlh is limited by the inequality of J < 1 which, together with the condition (24). is realized when 
k < v. The function jllo(j2) defined by relation (30) when k < v is shown in Fig. 1. We stress that the curve of jleO(j2) 
for n < v runs below the straight line of j2 = kj,/v corresponding to the condition of G = 0, and hence the curve of 
jlh(jZ) constitutes the upper limit of region I where a solution with 0 5 θ 5 1 exists. It starts in the point Q in Fig. 1, 
and at j2 >> 1 changes asymptotically to the straight line of jlLO = B + j2 where b = 2 4 1  - kv)(l + k). The concentration 
distributions of all components corresponding to the condition of cl(0) = 0 and relation (30) are shown in Fig. 3c. 

In the case of k > v, concentration cl(0) will not become zero whatever the values of j l  and j,. Here an increase 
in current j l  at fixed j2 has the effect that the value of c1(8) = G decreases ahead of cl(0). At  the same time the value 
of x = θ* where cl(x) has a minimum approaches x = θ, and at sufficiently high values of jl = jlee the point O* merges 
with 8 and ~(8 ' )  = G becomes zero. This occurs when jl = jl0 and 8 = 8: 

In this case the region I is limited by the conditions of G = 0 and 8 = 0. 
The situations where cl(8) = G = 0 correspond to the distributions of ionic concentrations and electric field 

following from relations (14) to (16) and (21) to (23): 

x - ) (  c2= ( I+  k ) ~ , ,  cS=O, c,=kclr 
- - 

iP=- l /  (2-0) for x:/O, 
- 

c,=c,-j2 (I-v/k) ( 0 - . t )  12, c.=c,=O, 

&'=- (k+v)/[  (k-v) GI-x) ] f o r  x-d. 

We notice that in the region of 0 x < 8 there are no salt anions when j1 = jlLB, ie, c,(x) = 0 and the solution behaves as 
a binary electrolyte consisting of the cations undergoing discharge and the OH- ions generated at the electrode. The 
concentration distributions (33) and (34) are shown in Fig. 3d. 

Limiting currents of cation discharge are shown as functions of the current of oxygen reduction at different 
values of k and v in Fig. 4. When j2 = 0 the values of jlL follow the relations of the theory of correlational migration 
current exaltation up to j ' = 2. The further behavior of jIL depends on the relative values of parameters k and v. For t k I v (curves 3 and 4) j1 is a linear function of j2 in accordance with (31). For 0 < k < v (curve 2) jle is determined by 
relation (30). 

As k/v decreases to zero point Q in Fig. 4 moves toward the vertical axis along the horizontal line of j1 = 2. 
Under these conditions the curve of jlh changes into the straight line of jlh = j, t 2 corresponding to the theory of 
migration current exaltation of [4, 5]. 


