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The electrodiffusion problem is solved for the case where metal cations are reduced in parallel with anions. 
hydrogen ions are involved in reduction of  the anions. and ionic charge is arbitrary. The resulting behavior 
of the limiting diffusion and migration current includes both a depression of migration, caused by the 
addition o f  acid to the solution, and an enhancement of migration caused by correlational exaltation of  
the migration current. The "totally" limiting currents are calculated as functions of the stoichiometric 
coefficients, the solution composition, and the diffusion coefficients of the ionic components. 

When several electrode reactions occur in parallel in a system lacking base electrolyte, they influence each other. 
Examples of such an influence are the migration-current exaltation observed when cations and a neutral substance are 
reduced a t  the same time [l-3], and the correlational exaltation of migration currents displayed when several types of 
cations undergo parallel reduction in processes of the same type [2, 4]. 

In the present work a general approach is developed which allows the mutual influence of metal electrodeposition 
and anion reduction to be analyzed in systems where the ions carry arbitrary charge. 

Consider the case where reduction of metal cations 

occurs in parallel with a process of reduction of anions A3z3- which involves cations A2"2+: 

where n2 and n3 are the corresponding stoichiometric coefficients, zl, z2, and r3 are the ionic charges, and CBi denotes 
the set of neutral products of reaction (2). We shall limit the present analysis to processes of the type of (2) where the 
products are neutral, and the solution contains two types of cations and one type of anions. Examples of such reactions 
occurring in acidified nitrate solutions in copper electrodeposition have been reported in [5]. 

The system of electrodiffusion equations describing reduction of metal cations (1) and the parallel reduction of 
anions which follows the scheme of (2) involving cations, is given by 

Here cl, cp ,  and c ,  are the concentrations of cations A61+, cations AE2+, and anions Az3-, respectively, which have been 
made dimensionless through the concentration c10 of cations Azl+ in the solution, Di are the corresponding diffusion 
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coefficients, Φ is the electric potential, F is the Faraday constant, R is the gas constant, T is the absolute temperature, 
x is the dimensionless coordinate (0 < x < 1),  L is the thickness of the Nernst diffusion layer, il and i2 are the current 
densities of reactions (1) and (2), respectively, and u = n2D,/n,D2. We point out that quantities jl, j2, and uj2 are 
positive since the fluxes of all three sorts of ion are toward the electrode. Equation (6) is a statement of the condition 
of local electroneutrality. At the limits of the diffusion layer (x  = 1) the values of potential and component 
concentrations are given as 

where k = czO/c10 is the dimensionless concentration of ions AzS2+ in the bulk solution, and for a more convenient 
formulation relative ionic charges Z1 = zl/zS and Z2 = t2/zs have been introduced. 

In the electrochemical system being considered, a "partial" limiting current with respect to the metal ions can be 
realized, which corresponds to the condition of cl(0) = 0, or  a "partial" limiting current with respect to the cations 
involved in parallel reaction (2) which corresponds to the condition of c2(0) = 0. It follows from (6) that a limiting 
current with respect to the anions being discharged can exist only when all three concentrations tend toward zero at the 
electrode, i.e., when cl(0) = c2(0) = c3(0) = 0. This state of a "totally" limiting current is associated with particular values 
of ionic fluxes jl and j2. 

It is the aim of the present investigation to find the distributions of concentrations, potential, and ionic fluxes 
under the conditions of a totally limiting current. 

Combining Eqs. (3) to (6) and integrating while allowing for boundary conditions (7), we obtain 

For x = 0 it follows from expressions (8) and (6) that 

where J = jl/j2 is the flux ratio, f l  = cl(0) and f 2  = cz(0) are the notation for the cation concentrations at the electrode. 
One must set f l  = 0 in (9) and find f2  as a function of parameter J in order to calculate flux j2 under the conditions of 
the limiting current with respect to metal cations. The state of the totally limiting current corresponds to conditions of 
f l  = f 2  = 0 and to some particular value of J. 

Multiplying Eq. (3) by zl, Eq. (4) by z2, and Eq. (5) by -z3, adding, and allowing for (6) we obtain an expression 
for the dimensionless electric field strength, -E = dQ/dx 

where Q = z3FO/RT is the dimensionless potential, and the following notation for combinations of parameters has been 
introduced: 

It follows from (10) and (12) that quantity 8, and thus also quantity dQ/dx, at Z2v < 1 can assume both positive and 
negative values. 

We change to the new independent variable Q in Eqs. (3) and ( 5 ) .  and substitute dx/dQ from (10): 

An equation for c3 need not be included in this system since it is obtained as a result of (13), (14) and (6), (10). We shall 
seek the solution of Eqs. (13) and (14) in the form of exp (XQ); this corresponds to a characteristic equation for the 
eigenvalues X given by 



The absolute term in Eq. (15) is always negative; therefore, at B > 0 the equation has two roots differing in sign. For an 
exploration of the case of B < 0 we rewrite the characteristic Eq. (15) with (12) as 

where 

It is readily seen from (12) that the condition of B < 0 is equivalent to the condition of 

while from (17) and (18) we can obtain the limits imposed on a: 

O<atb.max (Z,, 2,). (19) 

Considering J and u, Z,  and Z 2  as formal, positive parameters we notice that (16) and (17) are symmetric with respect 
to a simultaneous change of variables: Z, = Z,, v = J. Therefore, it will suffice to examine the case of Z1 > Z 2  in order 
to demonstrate that the discriminant is positive. The discriminant of Eq. (16) can be written as 

D=(b-a+Z,+Z2)2-4 (Z,Z,+a) (I-b) =(a+b-Z,+Z,)2+4 (ZZ+l)  (bZl-a). (20) 

The last term in parentheses in (20) is nonnegative because of condition (19), hence the entire discriminant is 
nonnegative. It is easy to show that the discriminant becomes zero only under the condition of J = o = 0, where 

It also follows from (18) and (19) that a < Z ,  + Z2 .  Hence all coefficients of Eq. (16) are positive. Therefore, 
characteristic Eq. (16) has always two negative roots when B < 0: 

X i .  = 
- (b-~+z,+z,) +)'D - (b-a+Z,+Z,) -1% . A 2  = (22) 

2(1-b) 2 (1-b) 

For B > 0 the quantities A, and A, satisfy inequalities A2 > 0 > A,. The case of ,!3 = 0 corresponds to d q l d x  = 0, 
which implies that there is no migrational transport in the system. 

We shall write the concentrations in a form which will satisfy the boundary conditions (7) for x = 1: 

Substituting (23) and (24) into (13) or (14) and equating the coefficients of the corresponding exponentials to the left 
and right of the resulting equation we obtain a linear system for g, and g, which has the solution: 

Thus, expressions (23) and (24) with values substituted from (17), (22). and (25) yield the distributions of 
concentrations c, and c2 (and via the condition of electroneutrality, also that of concentration c3) as functions of q. 
Substituting (23) and (24) into (10) and integrating we can obtain an expression for x(Q) which, together with (23) 
and (24), parametrically specifies concentrations c, and c, as functions of the coordinate. 

Let us now discuss the possible limiting-current modes in the system being examined. Concentrations cl(0) 
and ~ ~ ( 0 )  at the electrode are given by the relations 



where Q0 is the dimensionless potential drop across the diffusion layer. 
In the mode of limiting current with respect to the first kind of cations we have f l  = 0, and we obtain from (26) 

and (27): 

Substituting f l  = 0 and (28) into expression (9) we obtain the explicit function j2 = j z l ( ~ )  which, together with jl = Jj2, 
parametrically defines the function j2 = j2'(j11) for f1 = 0. 

Similarly, when the limiting current with respect to the second kind of cations is attained we have f 2  = 0, and 
f,  is given by the expression 

Moreover, from (9) we obtain the parametric connection of the currents, j22 = j22(j12). The superscripts in jli and j2' 
imply currents limited by the i-th component. 

The above functions and the coordinate axes define in the plane ( j ,  > 0, j2 > 0) a closed region within which 
each point (j,, j2) corresponds to a particular state of the electrochemical system. Consider in more detail the points of 
intersection of the curves j21(j11) and ja2(j12) with the coordinate axes jl = 0 and j2 = 0, i.e., the limiting currents 
attained when one of the electrode reactions is missing. 

Suppose that j1 = 0 or J = 0. Then it is easy to find the roots of the characteristic equation of system (13). (14), 
and solutions for the concentration profiles which satisfy the boundary conditions (7) for x = 1 can be written down as 

Constant go can be found when substituting (30) and (31) into (14): 

It is obvious from expression (30) that inequality cl > 0 is strictly valid for all finite Q, i.e., a partial limiting current 
with respect to only the second kind of ions can exist: c2(x=O) = 0. After finding the potential drop \ko from this 
condition with the aid of (31), and substituting it into (30), we obtain the value of  f 1 ,  and hence can immediately 
calculate j22(0) with the aid of (9). 

Let us define the conditions under which all concentrations will become zero at the electrode while Q -+ CQ. A 
necessary condition for this situation is a positive coefficient for the leading exponential in (31) (this is the exponential 
in which the exponent has the smaller absolute value). For σ > 0 the first exponential in (31) falls off more slowly than 
the second, which implies that its coefficient ought to be positive, which is in contrast with (32). For σ < 0, to the 
contrary, the second exponential falls off more slowly, and hence the condition of go < k should be satisfied. 

Thus, in this specific case of a totally limiting current (where j1l2 = 0). we obtain from (9) an expression for j212: 

We shall now analyze the limiting currents in the case of j2 = 0. In this case only metal electrodeposition occurs. 
From Eqs. (4) and (5) and boundary conditions (6) we immediately find the distributions of the electroactive ions: 
c2 = k exp (-Z2Q) and c3 = (2, + Z2k) exp \k. Function cl(Q) can then be obtained with the aid of electroneutrality 
condition (6). After manipulations analogous to those reported above, we can find j11(j2=O) in the mode of a limiting 
current with respect to cations, of c,(O) = 0. The function jll(k) corresponds to the Eucken relation generalized to the 
case of ions of arbitrary charge [6, 7]. In the expressions reported above, the exponents in the exponential terms have 
different signs; therefore, a totally limiting current cannot be realized when j2 = 0. 

Let us now find the values of fluxes j,12 and j212 in the mode of a totally limiting current, of f ,  -. 0 and f 2  - 0. 
Setting f l  = 0 in relation (29) we find that the expressions in the first or second set of parentheses on the right-hand side 



should be zero. Suppose that /3 < 0, and the first expression in parentheses is zero. Then the exponent X1/(X2 - A,) is a 
positive number, since A, < A, < 0, and hence g2 = 0. However, f 2  which is given by relation (28) also becomes zero, so 
that we can conclude that g, = 0. Therefore, the expressions in the second sets of parentheses in (28) and (29) are 
practically always zero. We readily see from (23) and (24) that this implies that c, and c2 are mutually proportional, and 
since because of the condition of electroneutrality c3 is a linear combination of c, and c,, concentration c3 is also 
proportional to cl. Hence from expression (8) we obtain the linear concentration profiles which, in the mode of the 
totally limiting current, can be written as 

In the case of B > 0, eigenvalues X1 and X2 have different signs, so that in the mode of the totally limiting current only 
the exponential term with a negative exponent need be retained in the solution (23), (24). This also leads to 
proportionality of c, and c2, and yields (34). For /3 = 0, finally, solutions (34) follow directly from (3) to (5). 

Substituting (34) into (10) we have 

After substituting (34), (35) into (3) and (5) we obtain a system of two linear equations for jl and j,; the solution of this 
system yields the values of the fluxes under the conditions of the totally limiting current: 

The condition under which solutions (36), (37) exist is a positive numerator in (36), which is equivalent to go > k 
(go is a combination of constants Z1, Z2, and v defined by relations (32) and (21)). 

Thus, depending on the relative values of parameters go and k, values j1l2 and j212 are given either by 
expressions (33) or by expressions (36), (37). Under the conditions of a totally limiting current, the concentration profiles 
can be linear functions (34) (when go > k) or nonlinear functions (when go < k). In the latter case, moreover, the 
inequality of cl << c,, c3 holds at x << 1. 

We stress that a situation is possible where reaction (1) cannot occur owing to diffusion, migration, and 
stoichiometric limitations while reaction (2) proceeds relatively vigorously. According to the above relations (36) 
and (37), when the concentration of the second kind of cations (A2',+) increases while that of the first kind of cations 
(A,",+) remains unchanged, current jl will experience a depression. For instance, when ions of the second sort are not 
present in the system we have k = 0 and (36) yields 

which is the result known for binary solutions. When there is an excess of cations of the second kind we have k -, co, 
and the current tends toward the value of 

which is lower than the value defined by relation (38). 
We shall now apply the results obtained to one of the possible NO3- reduction reactions during copper 

electrodeposition from nitrate solutions [5]: 

For these reactions zl = 2, z2 = z3 = 1, n2 = 3, n3 = 1, DN03- = 1.92.10-5 cm2/s, and DH+ = 9.34.10-~ cm2/s, whence 
Y = 0.617. Under the conditions of the totally limiting current, the concentration profiles are linear functions of the type 
of (34), and the dimensionless fluxes are given by the relations: 



Fig. 1. Limiting currents of metal deposition, j l l2 ,  as 
functions of solution composition according to 
relation (48)  with z l  = z 2  = z3 = 1 and the following values 
of parameter Y: 1) v  > 1, 2 )  v = 1 ,  and 3 )  v  < 1. Curve 4 
corresponds to relation (5 1). 

As k increases quantity j112 decreases until it attains a value of j112 FJ 0.5, which implies that the system exhibits an 
incomplete depression of the limiting current with respect to the first kind of cations. 

We point out that when all ions in the system have the same charge: z 1  = z 2  = 1, a mathematically simpler 
method exists for solving the system ( 3 )  to (7). In this case ( 8 )  changes to an expression for the concentration c3(x): 

c , ( x ) = ( l + J i ) + ( x - 1 )  ( j , + j , . ( 1 + ~ ) ) / 2 ,  (43)  

whence, with the aid of (5).  we readily find the expression 

d Y / d x =  ( jI- j t+vj2)  ( x )  ). (44)  

Integration of (44)  while allowing for the boundary condition of Q ( l )  = 0  yields 

Y ( 5 )  = r l n [ l +  ( x- 1 )  ( j l + j , ( l + v ) ) l ( 2 + 2 k ) )  1, (45)  

where r = ( j l  - j2  + v j 2 ) / ( j l  + j2 + v j 2 ) .  Substituting Q ( x )  into Eq. ( 3 )  we can find the cation concentration distribution 
c,(x): 

We notice that parameter τ generally can assume both positive and negative values. In the limiting-current mode with 
respect to the cations cl(x=O) -+ 0 .  In the case of r < 0 ,  c l (0 )  can tend toward zero, both on account of the first factor 
in (46)  [which, according to ( 5 ) ,  additionally implies that c3 -+ 0] and on account of the second factor. But in the case 
of r > 0  we find that c,(O) -+ 0  under the condition of 

Condition (47)  generally implies that quantity c,(O) tends toward zero, while concentrations c2(0) = ~ ~ ( 0 )  > 0 .  
The totally limiting current i12 implies that the conditions (47)  and ~ ~ ( 0 )  = 0  are simultaneously fulfilled. Then 

we can obtain from (43)  and (47): 



It follows from relation (50) that when k = 0, i.e., when no hydrogen ions are present in the solution, i12 coincides with 
the limiting current of ~FD,c,OL in binary solutions. The contribution coming from the second term in parentheses 
in (50) increases with increasing k, while the contribution which comes from the first term and describes the current 
of cation reduction decreases. The physical meaning of this result is as follows. Increasing values of k imply the 
realization of two competing effects. First, adding acid to the system causes the limiting current to fall to the values 
given by Eucken's relation: 

This value of ill2 follows as well from relation (47) when j2 = 0. Secondly, concurrent anion reduction causes a change 
in limiting current i l l2 analogous to that described by the theory of correlational migration-current exaltation [2, 4]. 
Functions j112(k), which were determined with relations (48) and (51) for a number of values of the parameter v ,  are 
shown in Fig. 1. It can be seen here that jll2 assumes values which are higher than those given by relation (51) when 
v > 1. The values of jll2 given by relation (48) are higher than those given by (51) at sufficiently small k when v < 1. 
Thus, here both the stoichiometry of the process and the relative values of the component diffusion coefficients, which 
are contained in v, are of importance. 
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