
J .  Electroanal. Chem., 303 (1991) 17-25 
Elsevier Sequoia S.A., Lausanne 

The theory of limiting diffusion-migration currents in 
partially dissociated electrolytes 

Yu.I. Kharkats and A.V. Sokirko 
A.N. Frumkin Institute of Electrochemisty, Academy of Sciences of the USSR, Leninsky Prospekt, 31, 
11 7071, Moscow V-71 (USSR)  

(Received 11 May 1990; in revised form 1 October 1990) 

Abstract 

The theory of limiting diffusion-migration currents is presented for partially dissociated electrolytes 
without the assumption that the dissociation reaction is in equilibrium and is based on the Nernst 
diffusion layer model. 

INTRODUCTION 

The processes of diffusion-migration transport of ions in solutions of completely 
dissociated electrolytes have been well studied [1]. Of interest is analyzing the 
peculiarities of these processes proceeding under conditions where the electrolyte is 
only partially dissociated according to the reaction equation 

Here A''' and are cation and anion, z1 and z ,  are charge numbers, A,IBL,2 is 
a neutral molecule, u,  and v2 are stoichiometric coefficients, and k ,  and k ,  are 
association and dissociation rate constants. The stoichiometric coefficients u ,  and u, 
coincide with | z2  | and z 1 in the case when | z2  | and z ,  are mutually simple 
numbers (do not have any common divisors). 

The diffusion transport of ions in systems with chemical equilibria in the absence 
of electromigration was analyzed in refs. 2-4. 

The dependence of a limiting diffusion-migration current of cation discharge on 
the equilibrium constant of a partially dissociated electrolyte was studied in ref. 5 
under the assumption -that dissociation and recombination rate constants are rather 



high, so that in the whole diffusion layer the concentrations of cations C, ,  anions C2 
and non-dissociated neutral molecules C3 are related by the equilibrium condition 

where ,B = k 1 / k 2  is the equilibrium constant. One of the most interesting results of 
ref. 5 is the fact that for sufficiently high values of the non-dissociated substance 
diffusion coefficient the limiting current can be several times higher than the 
diffusion-migration current in fully dissociated electrolytes. 

This paper presents the calculation of a limiting current of cation discharge in 
partially dissociated electrolyte in a more rigorous formulation without the assump- 
tion of equilibrium condition ( 2 ) .  The analysis presented is based on the Nernst 
diffusion layer model [1], which is widely used in electrochemical macrokinetics and 
accounts in implicit form for the convective transfer of ions. The theory developed 
here can also be applied to systems with membrane covered electrodes. 

STATEMENT O F  THE PROBLEM A N D  T H E  GENERAL SOLUTION 

Let us consider discharge of cations A''- reducing under steady state conditions 
to a neutral species which does not interact with any other substance in the solution. 
We shall also suppose that anions B ' ' -  are electrochemically inert and that direct 
discharge of molecules A,.,B,, is impossible in the whole potential region. 

The system of electrodiffusion equations describing the distribution of compo- 
nent concentrations C,, C2, C3 and electric potential $I in the diffusion layer close to 
the electrode can be written as 

Here Dl ,  D,, D3 are diffusion coefficients of the corresponding components, 
'P = F$I/RT is the dimensionless potential, i is the cation discharge current density, 
5 is a coordinate, and the remaining designations are generally accepted. 

The first and the third terms in eqns. (3) and (4) describe diffusion and migration 
fluxes of cations and anions. The second terms in these equations correspond to the 
transfer of substances Azl+ and B ' Q 1 -  due to diffusion of At,'BV2. Equation (5) 
describes diffusion transport of AL,IBL,2 molecules taking account of reaction (1). 
Finally eqn. (6) presents the condition of local electroneutrality in the diffusion 
layer. 



The system of equations (3)- (5) should be supplemented by the boundary 
condition 

corresponding to the electrochemical inertness of molecules A ,,,B,.2 and the condi- 
tion 

Cl ( 0 )  = 0 ( 8 )  
corresponding to the limiting current of cation discharge. At the diffusion layer 
boundary [ = L concentrations C1,  C,, C3 are equal to their equilibrium values: 

c,(L)=c,('(~) i = l , 2 , 3  (9) 

The values of equilibrium concentrations c?, C: and C$ can be related to the total 
concentration C O  of substance A,.,B,,, in a solution and with the equilibrium 
constant p by equations 

p (cp) "' (c,") "* = c?p (10)  

z lcp  = I zz I c; (11)  
c,O + v lcp  = v l c O  (12)  
Combining eqns. (10)-(12), one obtains the equation that determines the c ~ ( P )  
dependence 

cp+ " l p ( ~ p ) m ( r , / ~ z 2 ~ ) L " =  v l c O  ( 13 )  
where m = u1 + u2 is, the formal order of the recombination reaction. Substituting 
the solution of eqn. (13) into eqns. (11) and ( l 0 ) ,  one determines the equilibrium 
concentrations appearing in eqn. (9).  

The calculations in ref. 5, based on the solution of a system of eqns. (2)- (4)   and 
( 6 )  with boundary conditions (7)-(9), correspond to the limiting case, when the 
dimensionless parameter 8 = D 3 / k 2 ~ l  tends to zero, so that eqn. ( 5 )  should be 
replaced by eqn. ( 2 )  for any 0 < ,$ < L .  

It follows from the local electroneutrality condition ( 6 )  and from eqns. ( 3 )  and (4) 
that 

After passing to dimensionless variables: 

x = [ / L  c, = c,/cO (15)  
eqns. (5),  (14) and boundary conditions (7)- (9)   are written in the form 



where the following designations for combinations of parameters are introduced: 

p= ~ ( c ~ ) ~ - ~ ( z , / ~  Z Z  

Integrating (16) ,  one obtains 

γc1 + c, = j x  + b .  ( 2 0 )  
Using conditions (19) ,  one concludes that c,(O) = b ,  and using conditions (18) ,  one 
has 

.o j + b = j  ( 2 1 )  
where 

j0  = yk  + l 
Quantity j 0  is the expression for a dimensionless current in the case 6 = 0 ,  i.e. under 
the conditions of equilibrium of the dissociation-recombination reaction. Indeed, 
letting S = 0 in (17)  and (19),  one obtains j  = j O.  Quantity b can be treated in two 
ways simultaneously: as a dimensionless concentration of non-dissociated substance 
near the electrode and as a correction to dimensionless current j 0  for small 6.  As 
was shown above, b - 0 at S - 0. 

The system of eqns. (16 )  and (17 )  with boundary conditions (18 )  and (19 )  is 
nonlinear ( c ,  enters eqn. (17 )  in powers of m > 2 )  and, hence, it does not have any 
general analytical solution. Below, analytical solutions will be given for the limiting 
cases of recombination reaction 6 = 0, as well as for high and low dissociation-re- 
combination reaction rates ( δ  << 1 and δ  >> 1).  The results of numerical solution of 
a system will be given for the intermediate region of  δ  values of the order of unity. 

T H E  CASE O F  THE RECOMBINATION-DISSOCIATION REACTION EQUILIBRIUM 

As mentioned above, quantity j 0  is the expression for dimensionless limiting 
current in the case of the dissociation-recombination reaction equilibrium δ= 0 ,  
that was analyzed in ref. 5. The corresponding limiting current in dimensionless 
units can be written as 

In eqn. (22 )  the current i depends on p via the c P ( ~ )  dependence only. 
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Fig. 1. The i(β
−

) dependence for z ,  = 2, | z2  | = l  and for the following values of the parameter 
D,z,/Dz + 4 1 2 2  I/D,: (1) 1; (2) 2; (3) 3; (4) 4; (5) 5. 

Fig. 2. The c , ( x )  dependence for z ,  = 2, | z2  | = 1 and D,  = D2 = D3 and for values of p :  (1) 0.0343; (2) 
0.2187; (3) 1 ;  (4) 6.481; (5) 225. 

The i ( p )  dependence, determined by eqns. (13) and (22), is shown in Fig. 1. For 
a high dissociation degree, when p << 1, the dimensionless concentration of cations 
is cp = | z ,  I ,  and the current tends to the value 

i = (z, + | z, 1   ) z ,  FD,C'/L 

which coincides with the value of i in a binary solution of fully dissociated 
electrolyte. For a low dissociation degree, when p >> 1, the dimensionless concentra- 
tion of electroactive ions is cp << 1, and the limiting current tends to the value 

We should mention an important fact. Although the concentration of discharging 
cations in a solution decreases with lowering of the degree of dissociation, the 
limiting current tends to the asymptotic constant value which depends on the ratio 
of diffusion coefficients Dl, D,, D3 of components and parameters u ,  and u,. In 
this case the value of i for p + oo can be either higher, or lower than its value for 
p- 0. 

In the simplest case, when all diffusion coefficients are equal (D 1  =-D, = D,), the 
dimensionless limiting current is equal to 1 and does not depend on /3. 

A physical explanation for such behavior of i ( p )  is the fact that electroactive 
cations are transferred in a diffusion layer both via their diffusion and migration 
(the distribution of concentrations c,(x) for some values of p is shown in Fig. 2) 
and via diffusion transfer to the electrode with subsequent dissociation of neutral 
molecules AV,BL,2. (The distribution of concentration c3(x) is shown in Fig. 3.) The 
rate of the latter mechanism is proportional to the diffusion coefficient D3 of 



Fig. 3. The c , ( x )  dependence for the same parameters as in Fig. 2 

Fig. 4. The dependence of cation flux to the electrode on log B for different values of 6: (1) 0.02; (2) 0.1; 
(3)  1 ;  (4) 10. 

neutral molecules, and the corresponding contribution to the limiting current is 
given by the second term in eqn. (22). 

In case of D 1  = D, = D, the decrease of the contribution of diffusion-migration 
transfer of A''+ cations, caused by decreasing C: with growing p, is fully com- 
pensated by diffusive supply of dissociating neutral ACIBL,2 molecules to the elec- 
trode, which just provides the independence of the limiting current of p. 

ANALYTICAL SOLUTION FOR THE CASE OF HIGH REACTION RATES 6 << 1 

Since eqn. (17) contains a small parameter at a higher order derivative and is 
non-linear, we shall replace the dependent and independent variables in this 
equation in such a manner, that all terms of eqn. (17)  should be of the same order of 
magnitude [6-8]. Let y = x / 6 .  As follows from eqn. (20) ,  for x - 6 the sum of 
concentrations γc1 + c, is also of the order of  6. We shall seek the solution of eqn. 
(17)  in the form of 

C ~ = S " / ~ W ( ~ )  C , = ~ ~ / * U ( ~ )  ( 2 3 )  
where W ( y )  and U ( y )  are functions of the order of unity. It follows from eqns. (19)  
and (20),  that b ~ 6"12. Neglecting the terms of the order of in eqn. (20),  one 
obtains the approximate expression for function U :  

u( Y = ~ Y / Y  ( 2 4 )  
Substituting eqns. (23)  and (24) into eqn. (17), one obtains the equation for function 
W: 



with boundary conditions 

The general solution W(y) of homogeneous eqn. (25) is 

W = s, exp( -Y + s2 exp( Y )  

The particular solution W of a non-homogeneous equation can be found by the 
method of constants variation. Summing up the general solution of a homogeneous 
equation with the particular solution of a non-homogeneous equation, one obtains 
the general solution of a non-homogeneous equation, that satisfies the W'(0) = 0 
condition, in the form 

where m !  is the factorial function. Using eqn. (28) and the second condition in eqn. 
(26), one finds the value b = P ( j f i / y ) " m ! .  Substituting the latter one into eqn. 
(21), one obtains the equation for j:  

j  = j0 - am/'6( j / y ) m m !  (29) 

One may ignore the small difference between j  and j0 in the right-hand side of 
eqn. (28) and write down the approximate expression for dimensionless current in 
the form 

Thus, for low values of parameter f i ,  i.e. for hlgh dissociation rates, the limiting 
diffusion-migration current decreases proportionally to 6'"~+"2 ' /2 .  

THE CASE OF LOW REACTION RATES S >> 1 

In this case the solution can be sought in the form of expansion in powers of 
small parameter 6-' : 

c, = X  + 6-'Y (31) 

where X, Y are functions of the order of unity. Substituting this expansion into eqn. 
(17), taking into account eqn. (16) and equating the terms at δ ,  one gets 

After satisfying the boundary conditions (18) and (19) one obtains from the last 
equation the major part of the solution for c1: 

X =  kx  (33) 



To find Y, we equate the terms not containing 6 and, substituting eqn. (33), we 
obtain 

Equations (20) and (21) were also taken into account in deriving eqn. (34). Function 
Y satisfies homogeneous boundary conditions: 

Y(0) = 0 Y(l) = 0. (35) 

Integrating eqn. (34) using eqn. (35), one obtains 

This expression and the j = dc,/dx I ,=, condition give rise to the expression for a 
flux in case of low dissociation rates (δ   >> 1): 

The j ( p )  dependence, given by eqn. (37), is determined mainly by the first term 
and represents a monotonically decreasing function. 

THE NUMERICAL SOLUTION 

The system of eqns. (16)-(19) has also been solved numerically for some 
intermediate 6 values by using the Runge-Kutta method and the optimization 
procedure of searching for the j value satisfying the boundary conditions. 

Fig. 4 shows the j(1og p) dependences, calculated by numerical solution of the 
problem for some values of parameter δ. As follows from numerical calculations 
and from the results of an approximate analytical solution of the problem, the 
limiting current of reduction of cations decreases as parameter δ grows. 

CONCLUSION 

The above investigation shows that the limiting current in a partially dissociated 
binary electrolyte depends, first, on the electrolyte dissociation rate constant and, 
second, on the equilibrium constant. Analytical eqns. (30) and (37) for limiting 
current, obtained for the cases of high and low (δ  << 1, 6 >> 1) electrolyte dissocia- 
tion rate constants, allow the determination of the equilibrium constant P from 
experimental values of i and k2. For intermediate δ values constant P can be 
determined by using the family of curves j(1og p )  obtained by numerical solution of 
the problem. In the δ + 0 limit the calculated j ( P )  dependence transforms into the 
formula for j obtained in ref. 5. For low values of the dissociation rate constant 
(δ  >> 1) the value of limiting diffusion-migration current is determined mainly by 
the value of equilibrium concentration of electroactive cations in the solution. 



Note, in conclusion, that by changing the concentration C' in the solution, one 
can vary the value of parameter p, which is proportional to (c0)"'-', whereas the 
value of parameter 6 does not depend on c'. This allows, in principle, for the 
dissociation rate constant k 1  and the reverse recombination reaction rate constant 
k ,  to be found from comparison of the experimental dependence of the limiting 
current on concentration C0 and calculated j (In p) curves for different values of  δ. 
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