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Abstract 

The deformation of a lipid vesicle in an external electric field is analysed assuming constant membrane area and variable vesicle 
volume due to water transport through the membrane. The shape of the vesicle is approximated by a rotational ellipsoid. The 
equilibrium ratio of the semi-axes varies monotonically with field strength E,,. This ratio is useful for experimental determination 
of the bending elasticity modulus. The kinetics of vesicle deformation is described by the characteristic relaxation time r. This time 
increases drastically with vesicle size. A non-monotonic dependence of r on E

0
 is shown numerically and analytically. For weak 

and strong fields 7 is proportional to E; and E,;''' respectively. 

1. Introduction 

Application of an electric field causes deformation 
of lipid vesicles and cells. Deformation of lipid vesicles 
as well as of cells with no internal structure (such as 
erythrocytes), depends on the elastic properties of their 
membranes. Therefore studies of the dependence of a 
vesicle or a cell deformation on the strength of the 
electric field enable the elastic parameters of these 
systems to be determined. Several papers have already 
reported investigations of a phospholipid vesicle or ceil 
shape in an electric field. Shapes close to spherical 
have been investigated theoretically for the cases of 
constant [1] and alternating [2] electric fields. These 
studies were carried out assuming that the area of the 
cell membrane is constant and the analysis was per- 
formed for small deformations. Small changes of the 
membrane area were taken into account by Bryant and 
Wolfe [3], who analyzed the case of an a.c. electric field 
for an initially spherical cell. 

The strict formalism describing the vesicle shape 
should be based on the condition that the local equilib- 
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rium of each surface element is subject to the action of 
electrical and mechanical forces. The exact solution of 
this problem can be obtained by a numerical iterative 
procedure [4]. Such a procedure is cumbersome and 
therefore it is convenient to seek an adequate approxi- 
mate solution of the problem. The aim of this paper is, 
first, the theoretical analysis of a large deformation of 
a vesicle in an electric field by taking into account the 
bending elastic properties of the membrane and 
parametrizing the shape in such a way that it is possi- 
ble to determine the electrical forces analytically. For 
this reason the shape of the vesicle is assumed to be a 
rotational ellipsoid. The shape obtained by a small 
deformation of a sphere always belongs to this set and 
i t  is believed that they represent a good approximation 
at least for those volumes that do not deviate too much 
from the volume of a sphere. The second aim of this 
paper is to elucidate the corresponding dynamic be- 
haviour of the system by including possible water trans- 
port through the membrane. 

2. Spheroidal static vesicle deformation 

The vesicle should have an axisymmetric shape and 
a centre of symmetry. In order to calculate electrical 
forces it is necessary to determine the electric field 
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outside the vesicle. This problem can be solved analyti- 
cally only for a very limited set of surfaces. We shall 
simplify the problem significantly by assuming that the 
shape of our vesicle belongs to that set. We choose the 
family of extended rotational ellipsoids (spheroids) with 
constant membrane area. 

Let us introduce some notation. We shall be using 
the cylindrical coordinates y, cp, x with the symmetry 
axis x oriented along the vector of external field 
strength E,. The elongated spheroid (i.e. the ellipsoid, 
which is the body obtained by revolution of an ellipse) 
is then described by the equation 

Here a and b are the parameters of the ellipsoid 
(a > b). Owing to the condition of constant membrane 
area S ,  only one of them is independent [5]: 

where e is the eccentricity of the ellipsoid and 

In what follows we shall use the eccentricity e as an 
independent parameter, considering a and b as func- 
tions of e with the fixed parameter S .  Once the mem- 
brane area is constant, eccentricity is the only parame- 
ter determining the volume of the ellipsoid: 

We shall treat the mechanical aspects of the prob- 
lem first and then the electrical aspects. The elastic 
energy of a flaccid vesicle is given by its membrane 
bending energy: 

where H is the surface curvature, defined by its princi- 
pal radii of curvature R ,  (meridian) and R ,  (parallel), 

and the constant k c  is the modulus of bending elastic- 
ity. 

The expressions for the radius of curvature R ,  of 
the ellipse (cf. eqn. (1)) generating the ellipsoid is given 
by [5] 

(7) 

.l sur- According to Meneut's theorem for symmetrica 
faces R ,  = y/cos q, where θ is the angle between the 
plane x = 0 and the normal to the surface at the point 
of interest. Because tan 6 = dy/dx ,  the radius R ,  is 
expressed as follows: 

The element d S  of the surface of rotation can be 
expressed as 

We can substitute eqns. (6)-(9) into ( 5 )  and obtain the 
following expression for the membrane bending en- 
ergy: 

2e2 arcsine 

The dependence of Wh on e is shown in Fig. 1, curve 
1. Differentiation of eqn. (10) with respect to e gives 
the variation of the bending elastic energy correspond- 
ing to the variation de  of the eccentricity. 

dWi7 

4e e - 1 - 2e 2)  arcsine 

e2(1 - e2)3/2 

The electrical forces involved arise as a consequence 
of putting the vesicle into a static field E,. Here the 
vesicle is surrounded by a conducting medium and its 

Fig. 1. The dependence of (1) the elastic bending energy W,, (2) the 
electrical energy W,, and (3)  the total energy W of the vesicle on the 
eccentricity e. All energies are given relative to the bending energy 
of a sphere Brrk, .  Calculations of electrical energy are made for 
P = 2.67. 



A. Sokirko er 01. / Deformatior~ of a lrpid r.esicle in an elec~ric field 

inner content is also conducting. It is assumed that the 
membrane is non-conducting. Consequently, the field 
exists only outside the vesicle. Because the current 
density is proportional to the electric field strength (no 
concentration gradient), the problem is reduced to 
solving the Laplace equation for the electrical potential 
4 outside the vesicle: 

d 4 = 0  ( 12) 

At an infinite distance from the vesicle we have 

- V + = E ,  ( 13) 

The solution of problem (19)-(21) is 

where Q(A) is the first Legendre function of the sec- 
ond kind 

and Q' is the derivative of Q(A) with respect to its 
argument. The value of the electric field E on the 
surface is where E,  is the external field strength. At the vesicle 

surface the normal component of the field strength 
must be zero: 

(En)  = 0 ( 14) 

where n is an externally oriented unit vector, normal to 
the surface. Equations (13) and (14) define necessary 
boundary conditions. 

Let us consider the variation 6W,, in electrical free 
energy of the system, defined as the work of the 
external forces which compensate the electrical forces 
for an infinitely small displacement 6 u  of the elements 
of the surface: 

where 

is the Lam6 coefficient [5] .  The value of the electrical 
field at the vesicle surface is expressed as 

where where T is the electrical force per unit of the surface 
area. It is equal to the tensor product of the Maxwell 
stress tensor and the normal to the surface n [6]: 

T = E E , [ E ( E ~ )  - n ~ ~ / 2 ]  ( 16) 
According to Eq. (14) the first term is zero, and as T is 
normal to the vesicle surface, only normal components 
of u contribute to awe,, i.e. 

is the depolarization coefficient. 
Let us now consider in detail the surface movement 

due to changing eccentricity. A small normal displace- 
ment Sun of the vesicle surface corresponding to a 
small change d e  in eccentricity is given by 

Solution of the problem (12)-(14) is well known and 
can be found in the literature [6,7]. Transformation to 
the spheroidal coordinates is done in accordance with 
the formulae 
x = cAp 

In terms of Eqns. (1) and (3) we obtain 

y = c m \ q  ( 18) 

where A < 1, 0 I p I 1 and c = Jaz-bz is the half- 
distance between the ellipsoid foci. In the spheroidal 
coordinate system the Laplace equation (12) takes the 
form 

The derivatives d(a2)/de can be found by differentia- 
tion of (2): 

d ( a 2 )  2 x a 4  1 arcsine 

S 
2 e - - +  

d e e e 2 J 1 - e Z  (30) 

Because of the identity d y/de = (2 )-Id( 2)/de, eqn. 
(28) allows us to obtain Sun after substitution of (I), 
(2), (29) and (30). 

Then, after integration of eqn. (17), we obtain 
and the boundary conditions (13) and (14) become 
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where I is a dimensionless quantity depending on e: 

In order to find the final expression for We, we have to 
integrate (31) with respect to e: 

Combining results (11) and (31), we can calculate 
the variation in the free energy of the system, or the 
total work dW performed by external forces on the 
system at a small variation of the eccentricity de: 

dW = dWe, + dW, (34) 

Figure 1 shows the dependence of W and its compo- 
nents We, and W, on eccentricity e. 

It is possible to introduce a generalized force F ,  
acting along the e axis: 

Solution of the equation F = 0 will correspond to an 
equilibrium shape of the vesicle. The dependence F(e)  
is shown in Fig. 2. As F = 0 at e = 0, the point e = 0 is 
also an equilibrium point, although a non-stable one. 
The stable equilibrium of the system is established at a 
certain value of eccentricity which will be denoted by 
e*. 

The parameters En,  S and k ,  enter the equation 
F = 0 in a single dimensionless combination: 

Fig. 2. The dependence of the generalized force F (relative to the 
bending energy 8 a k c  of a sphere) on the eccentricity e .  The equilib- 
rium exentricity is denoted by e*. The dimensionless electrical field 
strength is 8 = 2.67. 

Fig. 3. The dependence of (1) the equilibrium excentricity e*, (2) the 
relative equilibrium vesicle volume V /  V,, and ( 3 )  the equilibrium 
semi-axes ratio ( b / a ) *  on the external dimensionless electrical field 
strength F. The broken lines correspond to the asymptotic expres- 
sions (45) and (46) .  

We can consider the quantity B as a dimensionless 
electrical field strength. Figure 3 shows the depen- 
dences of the equilibrium excentricity e*, the ratio b/a 
and the normalized vesicle volume V/V, on the elec- 
trical field strength 2?. Here V, = s3I2/6v% is the 
volume of a sphere with the area of the surface equal 
to that of the vesicle S .  

3. Kinetics of vesicle deformation 

Whenever condition F = 0 is not satisfied, water 
flow through the membrane is expected. The corre- 
sponding vesicle volume change can be expressed as 

where KS  is the water permeability of the membrane 
and p  is a pressure difference. 

We assume that the field was applied to a spherical 
vesicle at time t = 0. As the electrical charges redis- 
tribute much faster than the vesicle changes its shape, 
we can state that there is a generalized force F acting 
on the vesicle, moving it from the initial state to e*. 
The work dW is equal to the change - p  dV in the 
internal energy of the vesicle: 

d W =  - p  dV (38) 

The value of the pressure difference p  can be calcu- 
lated from (36) and the definition of the generalized 
force. Thus we obtain 

p  = - F de/dV (39) 
Taking the derivative of the vesicle volume (4) gives 
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Fig. 4. Dependence of the vesicle volume on time t / ~ , .  The initial 
volume is the volume of the sphere. The final relative volume is 
V /  V, = 0.835 which corresponds to the dimensionless electrical field 
8 = 5.  The broken line shows the exponential relaxation. 

Then, integrating eqn. (37), we obtain 

This is an implicit expression for the eccentricity e, and 
therefore for the vesicle volume V, as functions of time 
t (Fig. 4). 

Close to the equilibrium point the change in vesicle 
volume becomes a exponential with the characteristic 
time T of the exponential relaxation: 

The right-hand side of eqn. (42) can be rewritten as a 
product of r O ,  with the dimension of time, and the 
dimensionless combination: 

where v is the relative volume V/V, and the propor- 
tionality factor r0 is given by 

S 
T o  = 

288 . s r2~k ,  (44) 

The relaxation of vesicle volume and its exponential 
approximation are shown in Fig. 4 

4. Discussion 

We have suggested an approximate method of calcu- 
lation of lipid vesicle shapes in an external homoge- 
neous constant electrical field valid for relatively large 
vesicle deformations. The elastic properties of the vesi- 
cle are described by the bending elasticity modulus. 
The vesicle shape is approximated by a rotational ellip- 
soid. All the dimensional parameters of the problem 

are combined into a single dimensionless parameter 8 
(eqn. (36)). 

It can be proved by asymptotic analysis that, for a 
sufficiently long ellipsoid, the elastic forces are always 
greater than the electrical forces. Therefore the equi- 
librium solution exists for an arbitrary value of the 
electrical field. Simple analytical results can be ob- 
tained from the general equation F = 0 for the ex- 
treme cases of weak and strong electrical fields. In the 
case of the weak electrical field we obtain 

which coincides with results obtained elsewhere [1,2]. 
For the strong fields we have 

34/3 
e* = 1 - T l o / 3  -g -8 /3  

3 2 (46) 

These simple formulae give results which deviate less 
than 20% from the exact solution of the equation 
F = 0 at e* < 0.5 and e* > 0.9 respectively (Fig. 3). 
Therefore they may be useful within the limits indi- 
cated for comparison with the experiment. 

We shall indicate here the main practical applica- 
tion of the results obtained. Given the value of the 
experimentally measured eccentricity, we can solve the 
equation F = 0 and find the value of parameter g. 
This enables us to estimate the bending elasticity mod- 
ulus of the membrane. 

Let us now discuss the kinetics of vesicle deforma- 
tion. As has been shown above, the deformation kinet- 
ics is determined by the water permeability of the 
membrane. The characteristic time T of this process 
has been calculated as a dependence on parameter 8 
(Fig. 5(a))

For weak fields T can be expressed as 

Comparison of this result with the exact one is 
shown in Fig. 5.  The behaviour of ~ ( 8 1 ,  which is 
expressed in its non-monotonicity, is noteworthy. The 
most interesting is the increase of T with 8 ,  which is 
not immediately clear. However, this can be explained, 
if we note that the result (47) is valid for small Z? and 
therefore for small variations of the vesicle volume. In 
contrast, the volume change was expected to be com- 
parable with the volume of the vesicle. The result 
obtained is important, because for nearly spherical 
vesicles the volume changes very slowly (V/VO = 1 - 
e4/15), ' although the dependence of the volume 
change on the eccentricity is very strong. 

This expression can easily be derived from eqn. (4) by substituting 
a from eqn. ( 2 ) .  
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Fig. 5(a) .  Dependence of the dimensionless characteristic relaxation 
time T/T,, on the dimensionless electric field: (b) the same curve 
plotted on the logarithmic scale (the broken lines are asymptotic 
dependences obtained from eqns. (47) and (48)). 

Thus the factor (dV/de)* appearing in (42) is pro- 
portional to e 6 ,  and analogously T increases with ec- 
centricity (and consequently with the electric field). As 
is clear from (47), the characteristic time depends 
strongly on the vesicle size. Thus, for a field strength 
E,, = 10' V m-' ,  time 7 changes from 10 ms for vesi- 
cles with radius 0.1 p m  up to several months for vesi- 
cles with a radius of several microns. 

In the case of high field strength there is another 
asymptotic expression for 7: 

This dependence is also illustrated in Fig. 5b. Accord- 
ing to (48), in this limit T does not depend on the 
initial volume V,. 

In conclusion it should be noted that the results 
obtained are also valid for alternating electric fields if 
the frequency is not too high, so that the current flow 
across the vesicle can be neglected. 

5. Conclusions 

The dependence of the vesicle shape on the external 
field strength, bending elasticity modulus and vesicle 
size has been determined. It is shown that the vesicle is 
elongated with increasing field strength. The equilib- 
rium eccentricity is proportional to the electric field 
strength if the latter is weak. Alternatively the axis 
ratio b/a is inversely proportional to the electrical 
field to the power 4/3, if the latter is strong enough. 

The vesicle deformation kinetics has been studied 
under the assumption that the volume of the vesicle 
changes due to the water permeation through the 
membrane. The behaviour of the characteristic time of 
vesicle deformation is essentially different in weak and 
strong electric fields: in strong fields it does not de- 
pend on the size of the vesicle. whereas in weak fields 
it is proportional to the volume to the power 10/3. For 
weak fields this time is proportional to the fourth 
power of the external field strength, whereas for strong 
fields it is inversely proportional to the field strength to 
the power 8/3. 

The results can be used for experimental determina- 
tion of the bending elasticity modulus. 

Nomenclature 

a large semi-axis of ellipsoid, m 
b small semi-axis of ellipsoid, m 
c half distance between the ellipsoid foci 
e excentricity of ellipsoid 
e* equilibrium excentricity of ellipsoid 
E field strength, V m - '  
E,, external field strength, V m- '  
W dimensionless electrical field strength 
f depolarization coefficient 
F generalized force, J 
h Lam6 coefficient, m 
H surface curvature, m- '  
I dimensionless parameter 

k c  modulus of bending elasticity, J 
n externally oriented unit vector normal to the sur- 

face, m 
p pressure difference, Pa 
Q first Legendre function of the second kind 
R ,  meridians principal curvature radius, m 
R ,  parallels principal curvature radius, m 
S membrane area, m2 

t time, s 
T electrical force per unit of the surface area, J m-3 

u ,  normal component of 6u,  m 
V volume of vesicle, m" 

V,, initial volume of vesicle, m3 

W free energy of vesicle, J 



W, elastic energy of vesicle, J 
We, electrical energy of the system, J 
x axial coordinate, m 
y radial coordinate, m 
6u infinitely small displacement of the elements of 

the surface, m 
A Laplace operator 
E coefficient of permittivity 
E" permittivity of free space, 8.8542 x 1 0  m m  ' 
K water permeability coefficient, J -  m4 s-  ' 
A spheroidal coordinate 
p spheroidal coordinate 
19 angle between the plane x = 0 and the normal to 

the surface 
T characteristic time of the exponential relaxation, s 

rO proportionality factor for 7, s 

4 electrical potential, V 
q angular coordinate 
'7 divergence operator 
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