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The influence of the inhomogeneities in the fixed charge dis- 
tribution on the transport properties (permselectivity and cur- 
rent-voltage characteristics) of ion-exchange membranes is 
theoretically studied. A simple, approximate method for the an- 
alytical solution of the Nernst-Planck equations with the as- 
sumption of local electroneutrality is presented. Special attention 
is paid to the effect of the diffusion boundary layers on the perm- 
selectivity of the membrane system. Two fixed charge distribu- 
tions (linear and exponential) are considered in detail. It is pre- 
dicted that these distributions could show higher permselectiv- 
ities than a homogeneous distribution with the same average 
concentration. Still, the membrane permselectivity is mainly de- 
termined by the average fixed charge concentration and the 
thickness of the boundary layers. s 1994 Aesdernic  as, IOC. 

1. INTRODUCTION 

The technological importance of electrically driven s e p  
aration processes has led to a number of studies concerning 
the modification of the transport properties of ion-exchange 
membranes ( 1 ). It was an established idea that the perm- 
selectivity of these membranes was basically controlled by 
the ionic migration within the membrane itself and, there- 
fore, it could be determined from the ionic diffusion coef- 
ficients and the ionic distribution between the membrane 
and the external solutions (2). In order to increase the mem- 
brane permselectivity either the diffusion coefficients or the 
concentration of fixed charged groups must be modified. The 
former requires changes in the membrane structure and the 
results are very limited. The latter (i.e., the increase in the 
fixed charge concentration) requires increasing cross-linking, 
and this originates a prohibitive increase in the electrical 
resistance of the membrane. However, the total concentra- 
tion of fixed charge groups is not the only factor influencing 
the ion permselectivity. The particular distribution of these 
groups inside the membrane can play a significant role. In 
practice, one or both sides of the membrane are modified 
with highly charged films to enhance the ion permselectivity. 

' To whom correspondence should be addressed. 

Obviously, a simple model of homogenously charged mem- 
brane becomes inappropriate for such membranes and more 
accurate theoretical analyses are required. 

A number of recent studies on fundamentals of ion trans- 
port through charged membranes are devoted to the case of 
inhomogeneous fixed charge distributions (3-1 1 ). The study 
of inhomogeneous membrane models has been motivated 
by the following facts: ( i )  the availability of powerful exper- 
imental techniques that have conclusively shown that the 
distribution of fixed charge groups may be nonuniform on 
a macroscopic scale in many synthetic membranes ( 12), (ii) 
the observation of some interesting phenomena closely re- 
lated to asymmetries in the fixed charge distribution (3, 4, 
13-16), and (iii) the search for membranes with improved 
transport properties, i.e., with higher permselectivity or sep- 
aration factors ( 1 1, 1 7 ), etc. 

In principle, the mechanism through which fixed charge 
distribution affects the membrane permselectivity is likely 
to have a bamer nature (3).  That is, permselectivity could 
be mainly determined by the maximum value of the fixed 
charge concentration. In this case, membranes with highly 
charged surface layers should be the most suitable. Also, if 
the membrane is asymmetrical, the effect of reversal of the 
direction of current flow on the permselectivity should be 
studied. 

Our previous research effort in this field led to the devel- 
opment of simple numerical procedures to solve the transport 
equations for strongly ( 10, 11, 16) and weakly ( 17)  charged 
membranes. These extensions of the classical theory for ho- 
mogeneous membranes only considered the transport 
through the membrane and did not incorporate the diffusion 
boundary layers. It has been predicted, however, that the 
most interesting results are obtained for high electric current 
densities ( 1 1). In this range, the inhomogeneities in the fixed 
charge distribution can increase the permselectivity above 
that of a homogeneous membrane with the same average 
fixed charge concentration. Furthermore, it has also been 
shown that the concentration polarization phenomena 
should affect moderately the selectivity of homogeneously 
charged membranes ( 18) and it could be expected that an 
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even more important effect would be obtained with inho- 
mogeneous membranes. All the above facts make it necessary 
to study the effect of concentration polarization on the 
permselectivity of inhomogeneous membranes and this is 
the main subject of this paper. 

Here we will not be directly concerned with the origin of 
over-limiting currents (see, e.g., Refs. 18-2 1 ) and will restrict 
the analysis to under-limiting currents. A numerical study 
on the permselectivity of homogeneously charged mem- 
branes in the over-limiting current regime was presented in 
Ref. (18) .  

2. FORMULATION AND SOLUTION 
OF THE PROBLEM 

Figure 1 shows a sketch of the membrane system under 
study. Transport is considered in the x direction through a 
membrane that extends from x = 0 to d and two diffusion 
boundary layers (DBLs) lying from x = - 6 to 0 and from 
x = d to d + 6. The membrane is bathed by two bulk solutions 
of a 1: 1 binary electrolyte, whose concentrations are c~ at 
the left and CR at the right compartment. Without loss of 
generality, it will be assumed that the membrane has nega- 
tively charged groups. The distribution X ( x )  of the concen- 
tration of these groups is presumed fixed and known. 

The basic equations describing this problem are the steady- 
state Nernst-Planck equations for univalent ions (22) ,  

the equation for the electric current density, 

FIG. 1 .  Schematic view of the membrane system. 

tion. Nevertheless, taking into account that changes in X ( x )  
will occur over distances much larger than the Debye length, 
Eq. [4 ]  can be a reasonable approximation ( 3 ) .  Similar rea- 
sonings justify the validity of Eq. [3] .  

Equations [ I]-[4] must be solved under the boundary 
conditions c( - 6) = CL and c ( d  + 6) = CR (see Fig. 1 ). (Note 
that we will use the symbol c  without subscript to denote 
the ionic concentration in the DBLs.) Following Bassignana 
and Reiss (23)  the counterion flux J I  will be used as an 
independent parameter (instead of the electric current den- 
sity I ) ,  and we will focus on the calculation of the coion flux 
Jz for a given value of J ,  . The integration of these equations 
is not trivial because the migration terms in the Nernst- 
Planck equations make the system nonlinear. However, this 
integration can be carried out in a formal way if the electric 
potential profile is assumed to be known. By using the vari- 
ables cze-+ (i.e., the so-called Kramers' transformation (24)),  
the Nernst-Planck equation for the coion can be integrated 
inside the membrane to give 

and the assumption of local electroneutrality, 

Here J, , D l ,  and c, denote the flux, diffusion coefficient, and 
local molar concentration of the ith species, respectively. 
Subscript 1 refers to cations (counterions) and subscript 2 
to anions (coions). The electric potential in RTIF units is 
represented by rC/, where F is Faraday constant, R the gas 
constant, and T the absolute temperature. We will assume 
that the diffusion coefficients are constant throughout the 
whole membrane system. Solvent flow and activity coefficient 
effects will also be neglected. Finally, without loss of gener- 
ality, we will restrict the study to positive electric currents, 
i.e., those passing through the membrane system from left 
to right. 

The assumption of local electroneutrality can be regarded 
as a first approximation to the more general Poisson equa- 

and the coion flux can now be obtained from Eq. [5] ,  par- 
ticularized for x = d ,  as 

An expression essentially similar to Eq. [6 ]  was already de- 
rived as early as 1897 (25) .  It is worth noting that Eq. [6]  
is exact and constitutes the basis for the flux ratio relationship 
widely used in studies of ion transport through biological 
membranes (26) .  

In order to give some practical value to Eq. [6] ,  the con- 
centrations at the inner boundaries of the membrane, ~ ~ ( 0 )  
and ~ ( d ) ,  and the electric potential profile, rC/(x), must be 
found. According to the well-known Donnan equilibrium 
( 2 ) ,  both the ionic concentration and the electric potential 
are discontinuous at the membrane/DBL interfaces. The 
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concentrations at the inner boundaries of the membrane are 
related to those at the outer boundaries through the equations 

and 

so that the problem reduces to finding c(0)  and c(d) from 
the solution of Eqs. [ 11 - [3]  in the DBLs. 

The use of the local electroneutrality assumption, Eq. [3] ,  
leads to a simple analytical solution in the DBLs. Indeed, 
the concentration gradient in these layers is given by 

where q = -J1/J2 is the flux ratio. This ratio is directly 
related to the membrane permselectivity and we aim to ob- 
tain q as a function of JI. Once again, we call attention to 
the point that Jl will be considered as the independent pa- 
rameter. Indeed, the equations derived hereinafter will be 
presented in terms of JI . 

Integration of Eq. [9]  from x = - 6 to 0 yields 

where 4 = 1 - D1/qD2 and Jl,lim = 2 0 ,  cL/6 is the cation 
flux under limiting current conditions (c (0)  = 0 )  corre- 
sponding to an ideal membrane system with infinite perm- 
selectivity (q + cc , $ + 1 ). Analogously, integration of Eq. 
[9 ]  from x = d to d + 6 yields 

where r - cR/cL is the bulk solution concentration ratio. 
On the other hand, the electric potential, $(x), inside the 

membrane (see Eq. [6])  is obtained from the Nernst-Planck 
equation for the counterion, which can be written in the 
form 

But the integration of Eq. [12] requires knowledge of the 
counterion concentration profile, c, (x) ,  and this amounts 
to solving the transport equations. By using the local elec- 
troneutrality assumption, Eq. [4] ,  an analytical solution can 
be obtained for the case of homogeneous membranes and 
even for certain inhomogeneous membranes ( 16, 17 ) . How- 
ever, no analytical solution can be found for a general fixed 
charge distribution, and therefore further approximations 
must be introduced if an analytical solution is in demand. 

(Note that we can use any numerical method to solve the 
transport equations but the analysis of the results is more 
difficult in this case ( 1 1 ).) Here we will decouple the transport 
equations by restricting our study to the case of strongly 
charged membranes (i.e., the case of greater practical inter- 
est). The counterion concentration inside the membrane 
can then be approximated by the fixed charge concentration 

and integration of Eq. [I21 now leads to 

where $(O) is the electric potential at the left inner boundary 
of the membrane. 

By using Eqs. [6]  and [14], the flux ratio q = - JI/J2 
becomes 

where c2(0) and c2(d) still depend on q and J1. Since Eq. 
[ 15 ] has been obtained from Eq. [ 13 1, we can use this ap- 
proximation once more in Eqs. [7]  and [8]  representing the 
Donnan equilibrium and write down 

and 

The approximation $ -- 1 is reasonable in the case under 
consideration because qD2/ Dl  + 1, but it is not necessary. 
Another expression for q, more accurate but also very cum- 
bersome, is presented in the Appendix. Equations [ 1 5 ] - [ 17 ] 
allow for a direct evaluation of q in terms of J1 for any 
arbitrary fixed charge distribution X ( x )  . 

The diffusion coefficients involved in Eqs. [6]  and [14] 
refer to the membrane phase, while those in Eqs. [9 ] - [ 1 1 ] 
refer to the bulk solution phase. For the sake of clarity, we 
have implicitly assumed that they are equal. Nevertheless, 
Eq. [15] can be readily generalized to the case of different 
diffusion coefficients in the external solutions and the mem- 
brane. 

The final point in the problem statement corresponds to 
the specification of the fixed charge distributions under con- 
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sideration. Previous studies not incorporating the DBLs ( 1 1 ) 
showed that membranes with a linear distribution of charged 
groups could exhibit under certain conditions a permselec- 
tivity significantly greater than that of the corresponding ho- 
mogeneous membrane, i.e., that with the same average fixed 
charge concentration 

1 
( X )  - - s  X ( x ) d x .  

d o  

In that study, it was also possible to find the distribution 
which maximizes the permselectivity at a given current den- 
sity. This optimum distribution can be very well approxi- 
mated by an exponential function. 

Therefore, only the exponential distribution 

and the linear distribution 

X ( x )  = ( X )  [ l  + a ( x / d  - 0 .5 ) ] ,  0  =S x < d. [ 2 0 ]  

will be considered here. In both of them, a  represents the 
amplitude of the variation of the fixed charge concentration 
with respect to its average value, a = [ X ( d )  - X ( O ) ] / ( X ) .  
These two distributions are very convenient since they lead 
to analytical expressions for the integrals in Eq. [15]  and 
will give significant changes in the membrane permselectiv- 
ity. Also, from our previous studies we expect that mem- 
branes with higher permselectivity than the corresponding 
homogeneous membrane should be obtained when a and I  
are of the same sign, while different signs should lead to 
lower permselectivity ( 1 1 ). 

3. RESULTS AND DISCUSSION 

The results will be presented in the form of dimensionless 
groups so that a greater generality is achieved. Then, we only 
need to specify values for the ratios of the membrane system 
parameters. In particular, we have set Dl = D2 and cL = CR - co = 0.1 ( X )  in the computations, though the theoretical 
expressions will still be written in the general form. It is worth 
noting that the ion concentrations at the left and right outer 
boundaries of the membrane will be different from each other 
(even though cL = cR)  due to concentration polarization. 
The effect of different values for the ratio ( X ) / c o  has been 
considered elsewhere ( 1 1 ). On the other hand, the effect of 
the ratio 6 / d  will be studied here. The case 6  = 0.1 d, which 
might well correspond to thick ion-exchange membranes, 
will be usually considered. 

The condition cL = c ~  = co allows us to derive an important 
conclusion from the transport equations which will help in 

analyzing the results. By elimination of the electric potential 
gradient in the Nernst-Planck equations [ I ]  we obtain 

Integration of Eq. [21]  from x = - 6  to d  + 6 yields 

where e l ( - 6 ) c 2 ( - 6 )  = c l ( d  + 6 ) ~ 2 ( d  + 6 )  = c; has been 
used in the first step and Eq. [ 9 ]  in the second step. Since 
the concentration profiles in the two DBLs are linear and 
have the same slope (see Eq. [9] ) ,  the term 2c06 appears in 
both the numerator and the denominator of Eq. [ 2 2 ] .  The 
major effect of concentration polarization is the important 
reduction in the flux ratio due to this term. Also, a minor 
effect comes from the second term in the numerator and the 
denominator of Eq. [22]  and the nonlinearity of the transport 
equations, as shown in Ref. ( 5 ) .  In Ref. ( 1  1 ) the average 
ionic concentrations inside the membrane were shown to 
depend on the electric current density passing through the 
membrane even though the boundary concentrations were 
kept fixed. In the case under study, this dependence is ex- 
pected to be even more important, since the change in the 
ionic concentrations at the membrane boundaries with the 
electric current density is now taken into consideration. 

For a highly charged homogeneous membrane under 
equilibrium conditions, Eq. [ 2 2 ]  can be approximated by 

which leads to a value of 7, = 34.3 for our choice of param- 
eters. Subscript h simply denotes the homogeneity of the 
fixed charge distribution. 

Equation [23 ] can also be used to test the accuracy of our 
results. The application of Eqs. [ 1 5  ] - [ 1 7  ] to a homogeneous 
membrane under equilibrium conditions leads to 

Dl 
tlh % - ( X ) d  ( I = O ) .  

D2 2 c d  + ( c % l ( X ) ) d  
[ 24 I 

Then it is apparent that Eqs. [ 151 - [ 171 underestimate the 
permselectivity, but the difference with the exact value is 
small as long as the ratio 26co / (X )d  remains small. Fur- 
thermore, if the approximation @ -- l is not employed, Eq. 
[ 151 gives a result for 7 which is accurate to order ( C ~ / ( X ) ) ~ .  

The accuracy of Eqs. [ 1 5  ] - [ 171 under nonequilibrium 
conditions can be studied for the case of a homogeneous 
membrane. In fact, integration of Eqs. [ I ]  and [ 4 ]  leads to 
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FIG. 2. Flux ratio vs reduced electric current density I I I , , ,  for: ( a )  the exponential distribution (Eq .  [19])  with n = 0, 1, 2, and 3, and ( b )  the linear 
distribution (Eq. [20]) with a = 0, 0.5, 1.0, 1.5, and 1.9. The ratio bld has been set equal to 0.1. 

where 

and Eqs. [ l o ]  and [ I  I] provide c2(d) and c2(0) in terms of 
vh and J l .  Equations [25]-[26] constitute a transcendental 
equation in qh that can be solved iteratively; e.g., the first 
estimation for e can be obtained by letting vh - co and 
4 - 1 in Eq. [26]. The results of Eqs. [15]-[I 71 involving 
approximation [13] have been compared with this exact so- 
lution and agreement within three significant figures has been 
found. 

Equation [23] can also be used to compute the perm- 
selectivity under equilibrium conditions of any inhomoge- 
neous membrane. Since the Donnan equilibrium holds then 
locally, the coion concentration profile is simply given by 

and the average ionic concentrations inside the membrane 
to be used in Eq. [23] can be easily calculated. When com- 
paring different distributions with the same (X) ,  a value of 
.II smaller than vh is always obtained, thus indicating that the 
homogeneous membrane is the most permselective under 
equilibrium conditions. In particular, the low values of the 
concentration X ( x )  have a greater influence on the difference 
between 77 and qh than the high values (27) .  (See Ref. I I for 
a mathematical proof of these statements.) 

So far we have used the cation flux as an independent 
parameter. Thus, Eq. [15] represents T as a function of JI. 
This has proved to be quite useful for the development of 
the theory here presented and avoids the numerical solution 
of the transport equations. However, it seems more conve- 

nient to show the following results in terms of the electric 
current density. The value of 1 can be readily obtained from 
Jl as 

Again, it is convenient to introduce the limiting current cor- 
responding to an ideal membrane system with infinite perm- 
selectivity as IIim - FJl,lim = 2 FD, cL/d. Now, the curve ( I ,  
~ ( 1 ) )  can be obtained in parametric form ( I (  Jl ), v( J1  )). 

Figures 2a and 2b show the change in the flux ratio 17 with 
the reduced electric current density, I / I l im,  for the exponen- 
tial and linear distributions, respectively. Different degrees 
of inhomogeneity have been considered through the values 
of a. If concentration polarization were ignored, the perm- 
selectivity ofa homogeneous membrane separating two bulk 
solutions of the same concentration would be independent 
of the electric current density. However, all of the curves in 
Fig. 2, including that for a = 0, show an appreciable curvature 
due to the concentration polarization. (This is the minor 
effect of concentration polarization we mentioned above.) 
It is interesting to note that the curvature is more pronounced 
for the higher values of a, i.e., for the more inhomogeneous 
membranes. 

The comparison of Figs. 2a and 2b shows that similar 
increases in the permselectivity are obtained for these two 
distributions. Even though we have not developed an algo- 
rithm which determines the distribution showing the max- 
imum increase in permselectivity ( 1 1 ), the consideration of 
some other distributions (different to those presented here) 
always led to smaller increases. This fact (and our previous 
experience) indicates that the exponential distribution ac- 
tually gives an increase in permselectivity very close to the 
highest that can be achieved with any distribution. 

Figure 3 also shows how the flux ratio of the membrane 
with an exponential distribution of fixed charge groups varies 
with a and I/ Ilim. (Similar results are obtained for the linear 
distribution.) In this case the curves have been made para- 
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FIG. 3. Flux ratio vs a for the exponential distribution. The values of 
the reduced electric current density I I I , , ,  are shown on the curves. The 
ratio 6/d  has been set equal to 0.1. 

metric in I/Ilim and negative values of a have also been in- 
cluded. As mentioned above, the negative values (note that 
I is positive) lead to a decrease in permselectivity with respect 
to the homogeneous membrane, while large positive values 
of a lead to higher permselectivities. This fact can be easily 
rationalized in terms of the interface through which the dif- 
ferent ions are entering the membrane. Since the distributions 
considered have X ( d )  > ( X )  > X ( 0 )  for a > 0, and the 
anions (coions) are entering the membrane through the in- 
terface at x = d ,  they see a more selective membrane (higher 
fixed charge than the average) and, therefore, they are more 
effectively prevented from entering the membrane, leading 
to a higher permselectivity. The contrary is essentially true 
when a < 0. 

Note that the curve corresponding to I/Ilim = 0.3 in Fig. 
3 exhibits a maximum at ca. a = 2. The maximum moves 
rightward with increasing values of I/Ilim and the curve be- 
comes monotonous for I/ Ilim = 1. This means that the more 
strongly inhomogeneous membranes show larger current ef- 
ficiencies in the limiting current regime. ( However, this ad- 
vantage could hardly be used in practice because significant 
increases in 7 require very high degrees of inhomogeneity.) 
Figures 2a and 3 also show that the flux ratio of the homo- 
geneous membrane is larger than that of most inhomoge- 
neous membranes when the electric current is small. See 
Ref. ( 1 1 ) for a detail discussion of this question. 

Figure 4 shows the main effect of concentration polariza- 
tion on the flux ratio. The variation of 7 with the ratio 6 /d  
has been studied for the homogeneous distribution and the 
exponential distribution with a = 3. In this plot, the ratio 
I/Ilim has been kept constant and equal to 0.5. Since Ilim 
depends on the DBL thickness 6, the condition I/ Ilim = 0.5 
implies that I is changing from point to point in the same 
proportion as Ilim does. However, the boundary concentra- 
tions c (0)  and c(d)  are constant (see Eqs. [ 101 and [I 11 ) 
throughout. 

On the one hand, I tends to infinity when 6 /d  tends to 0. 
The staggering increase in the permselectivity as 6 /d  goes to 
0 that Fig. 4 shows for the exponential distribution is then 

unrealistic. However, this increase makes very clear that the 
effects of the inhomogeneity in the fixed charge distribution 
could be very important in those situations where the DBL 
thickness is smaller than the membrane thickness [ I  I]. On 
the other hand, I x 0 when 6 / d  + 1 and Eq. [15] simplifies 
to 7 '1 DI/DZ = 1 (see Eq. [23]),  i.e., the permselectivity 
is completely lost. 

In many practical situations the ratio 6 /d  varies from 0.1 
to 1. The flux ratio 7 of the homogeneous membrane changes 
then from 30.3 to 5.7, and that of the inhomogeneous mem- 
brane (exponential distribution of a = 3)  changes from 38.5 
to 5.9. There is then an important decrease in 7 as the DBL 
thickness becomes greater, and this decrease makes it in- 
appropriate to approximate the permselectivity of the mem- 
brane system by that of the membrane. 

Figure 5 shows the current-voltage characteristics of the 
homogeneous membrane, a = 0, and the inhomogeneous 
membrane with the exponential distribution of a = 3. The 
total potential drop through the membrane system is cal- 
culated with the aid of Eq. [12] as 

2 J I , I ~ ~ + O J I / ~  ~ C L J I J ~ $  
x -In r - - In 

O J i m  - O I 6 J1.1im o 

where we have made 7 + 1 in the last approximation. (Note 
that Eq. [29] could be alternatively obtained by adding up 
the Donnan potentials at the membrane interfaces and the 
potential drops in the membrane and the two DBLs.) The 
analysis of these characteristics is important from a practical 
point of view, since the significant increase in the membrane 
permselectivity shown in Fig. 2a could be accompanied by 
an also significant increase in the membrane electrical resis- 
tance. Figure 5 shows that this increase exists indeed. For 

FIG. 4. Flux ratio vs b / d  for the homogeneous distribution, a = 0, and 
an exponential distribution with a = 3. The ratio III,,,  has been set equal 
to 0.5. 
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FIG. 5. Current-voltage characteristics of membranes with a homoge- - 
neous distribution, a = 0, and an exponential distribution with a = 3. The 
ratio d / d  has been set equal to 0.1. 

instance, at Illlim = 0.3 the increase in the flux ratio is about 
10% while the increase in membrane resistance is about 40%. 
Finally, it must be remembered that the present study is only 
reliable in the under-limiting regime, and the region I/Ilim 
x 1 in Fig. 5 may not be representative of a real membrane 
system ( 18-2 1 ). 

4. SUMMARY 

We present here a simple theoretical study of the effects 
that the macroscopic inhomogeneities in the fixed charge 
distribution exert on the transport properties of membrane 
systems (ion-exchange membrane and DBLs). Analytical 
solutions are obtained for the permselectivity of the mem- 
brane system (i.e., the flux ratio q)  and the current-voltage 
curve. No limitations are imposed on the ionic diffusion 
coefficients and the bulk concentrations, but the theory pre- 
sented still introduces a number of simplifying assumptions. 
In particular, the main restrictions are the conditions of un- 
der-limiting current and of highly charged membranes. In 
this sense, it must be considered only as representative of 
the trends of a real inhomogeneous ion-exchange membrane 
system. However, most of the theoretical predictions are ex- 
pected to be observed in practice. 

It is concluded that the permselectivity is mainly deter- 
mined by the average fixed charge concentration and the 
thickness of the DBLs. Modification of the permselectivity 
of the membrane system should then be accomplished by 
controlling these parameters. However, it is predicted that 
the permselectivity of the membrane system also depends 
on the particular distribution of the fixed charge groups in 
the membrane. In the Introduction we wondered whether 
this influence of the fixed charge distribution had a bamer 
nature. The results presented show that there is no such bar- 
rier character. As a rule, an increase in q is obtained by re- 
distributing the fixed charge groups asymmetrically and hav- 
ing the coions enter the membrane through the highly 
charged side, but the current efficiency depends on the par- 
ticular distribution. 

When the approximation 4 -- 1 is not used in Eqs. [16] 
and [17], Eq. [I 51 becomes a quadratic equation in 1 111 
whose solution is 

[Al l  

where 

d 

+ X ( x ) E ( x ) d x  [AZ] 
C L ~  0 

and 

E ( x )  = exp [g S' *] 
0 X ( E )  
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